(st Choice Rotational mechanics

* Rigid body \Rightarrow The relative position of one particle with respect to other racticle af a rigid body does not change during motion of rotation,.

The relative velocity of one particle with respect to other portide along the line joining the two particle is always zen

* Moment af Inertia \Rightarrow

It in the propation of body which always oppose the change in rotational notion on state afrigid body in rotation.

Note: \rightarrow

1) m.Q. i is not constant for a body. It depends on the arcs af rotation.
2) M.O.I depends on the mans af the body. The higher the mars, the higher the m.o.T,
mi) mon depends on the distribution af the mans about an axis. The focthen the mas sen distributed form the anis, the higher will be M.O.D. Now
moment of Thertia doe net change if the mass (i) is shifter parallel to the ans of the rotation
(ii') Is rotated with constant radices about axis of rotation.
$\mathrm{H} \Rightarrow$ M.O.I of a particle about given axio(in) v.u.t

$$
I_{A D}=m r^{2}
$$

where

$$
r \Rightarrow 1^{r} \text { distance }
$$

af mars (m) from the
A

$$
A \mid
$$

\square
$\xrightarrow{-1-\cdots \cdots m}$ given axis.

Note: \rightarrow moment af o dEmentia con he treated as scalar ouantity about the same given and $\%$
af rotation. af rotation.

* Moment of Inertia (M.OD) of system of Facticl about the given an's (D) \Rightarrow

$$
\begin{aligned}
\mathbb{P}_{A B} & \Rightarrow m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{0} r^{2} \cdots \cdots m_{n} r_{n}^{2} \\
& \Rightarrow \sum_{i=1} m_{i} r_{i}^{2}
\end{aligned}
$$

$\nabla_{i} \Rightarrow 1^{r}$ distance of lith mars (mi) from the given axis.
Note: \rightarrow moment af ingesta. depends on the following footsosis
i) mans af body:
ii) mas distribution of body on shape size. density af body.
iv on the position of axis af rotation.

about a given axis $A B$.

$$
\begin{aligned}
r & =\alpha \sin 70^{\circ} \cdot क 00 \\
& =\alpha \frac{1}{2} \\
& y \frac{\alpha}{2}
\end{aligned}
$$

So,

$$
\begin{aligned}
2 A B & =\text { wars }^{2} m r^{2} \\
& =m\left(\frac{d}{2}\right)^{2} \Rightarrow \frac{m d^{2}}{4} A \text {. }
\end{aligned}
$$

(x) 2

Find the moI of the given figme: af out
(i) About x-axis's.
(ii) About y-axis en the plane apo figure.
(iii) About zoan's

An) (i)
jae

$$
\theta=\operatorname{mr} r^{2}
$$

$$
\begin{array}{r}
r=d \cos r 0 \\
v d \cdot \frac{\sqrt{3}}{2}
\end{array}\left\{\begin{aligned}
r=\frac{d \sin 60^{\circ}}{} & =\frac{d \sqrt{3}}{2}
\end{aligned}\right.
$$

$$
\begin{aligned}
& =m r^{2} /\left(\frac{1 \sqrt{3}}{2}\right)^{2} r=0+0+m\left(\frac{2 \sqrt{3}}{2}\right)^{2} \\
& =m
\end{aligned}
$$

$$
=\frac{3 m d^{2}}{4}
$$

$$
\begin{gathered}
\text { (i) } \pi y=0+m d^{2}+m\left(\frac{d}{2}\right)^{2} \\
=\frac{5 m d^{2}}{4}
\end{gathered}
$$

iii)

$$
\begin{aligned}
T_{2} & =0+m d^{2}+m d^{2} \\
& =0+2 m d^{2} \\
& =2 m d^{2}
\end{aligned}
$$

\&) Mars ale Dhertia of continuous distribution about given anis \Rightarrow mas

$$
I_{A B}=\int d \tau
$$

$$
I_{A B}=\int d T=\int d m \cdot r^{2}
$$

1.) Moment of Inertia af Uniform thin rad! \Rightarrow

$$
\left.\sum_{\text {man }} m_{1} \cdot\right)_{\text {length }}
$$

Pout an am's through its centre of mars and ir to the length of $r o d: \Rightarrow$

$$
\lambda=\frac{m}{l}=\text { coma }
$$

$$
\begin{aligned}
I_{A B}=\int d I & =\int(d m) \cdot x^{2} \\
& =\frac{m}{l} \int_{x=1 / 2}^{x 2} x^{2} d x \\
& \Rightarrow \frac{m}{l}\left[\frac{x^{2}}{3}\right]_{l / 2}^{1 / 2} \\
I_{A B} & =\frac{m l^{2}}{12}
\end{aligned}
$$

Eris

Ans.: \rightarrow

WWW.GRADESETTER.COM
(s) Choice

$$
\begin{aligned}
& =\lambda \sin ^{9} \cdot d \int x^{2} d x \\
\operatorname{CPQ} & =\frac{m^{2}}{3} \sin ^{2} \alpha \quad C_{P Q}=\frac{m^{2}}{3} \sin ^{2} \theta
\end{aligned}
$$

(2)

शाद सdे।

Fer 2

Fins m.O.I af given fobs figure about

$$
\text { 1) } x \text {-axis ans }
$$

$$
\text { 11) } y \text {-axis }
$$

An.

$$
\begin{aligned}
I_{x}= & 2\left(\frac{m l^{2}}{12}\right)+0 \\
& \Delta \frac{m l^{2}}{6} \\
I_{y}= & 0+\frac{m l^{2}}{3}+m l^{2} \\
& \Rightarrow \frac{4 m l^{2}}{3}
\end{aligned}
$$

(bambi M. M.O.I ab Uniform Ring (m, R) about an axis through its coom and ir $\forall 0$. the plane of ring $i \rightarrow$

$$
\begin{aligned}
I=\int d I= & \int(d m) R^{Q} \\
& =R^{2} \int d m \\
& \Rightarrow m R^{2}
\end{aligned}
$$

sotels fubpoindsis
(a)

WWW.GRADESETTER.COM
(b)

50

$$
\begin{aligned}
d_{2}^{\prime} & =m_{1} R^{2} \\
& =\frac{I}{4}
\end{aligned}
$$

3.) M.O. I of uniform circular its cion about an Anis through to its plan \Rightarrow

$$
I_{\text {an }}=I_{2}=\frac{m Q^{2}}{2}
$$

Proof: \rightarrow

$$
\begin{aligned}
I_{2}=\int d I & =\int(d m) x^{2} \\
& =62 \pi \int_{x=R} x^{3} d x \\
\frac{3 x^{2}}{\frac{3 R^{9}}{3}} & \Rightarrow 62 \pi
\end{aligned}
$$

$$
\Delta \frac{m Q^{2}}{2}
$$

Note :-9
(a)

$\boxed{\boxed{x}}$:

$$
T_{0}=?
$$

Find the m.O.I of hallow dice about an arsis parsing through point O^{\prime} and I' to the plane af disc.

$$
I_{0}=62 \pi \int_{I_{0}=\frac{m}{2}\left(R_{1}^{2}+R_{2}^{2}\right) R_{1}^{3} d x}^{x i R n}
$$

4) M.O.I af uniform Rectangular Plate about an Ares through its c.o.m and perpectarptane af rester Ae plate:
Parallel to one of two are ranis so sides \Rightarrow

None

WWW.GRADESETTER.COM

$$
\begin{aligned}
I y=\int d \lambda & =\int_{x=-l / 2}^{x+d / 2}\left((2 m) x^{2}\right. \\
& =\frac{m d b}{l^{2} 6} \int_{-1 / 2}^{x / 2} x^{2} d x \\
& =\frac{m l^{2}}{12}
\end{aligned}
$$

5.) m. O.I af uniform hollow cylinder about arse on Ares through $\mathrm{C} \cdot \mathrm{O} \cdot \mathrm{m}$ and parallel to length.

6) m.a.T ab solid Through uniform cylinder about an axis

$$
I_{y}=\frac{m R^{2}}{2}
$$

7) M. O. I of unifarm hollow sphere on (thin) about an aris through ths c.o.m

$$
I_{\text {cm }}=\frac{2}{3} m R^{2}
$$

$$
\begin{aligned}
& \text { OTher Por } \\
& \text { 20. } r=R \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& =m_{i}\left(x^{2}+z^{2}\right) \\
& I y=\sum_{m i}\left(y^{2}+z^{2}\right)^{f_{0}} \\
& I_{\text {co }}=\int d \Phi=\int \frac{(d m) r^{2}}{\theta=2 \pi} \\
& =62 \pi R+\int_{\theta=0}^{0.2 \pi} \sin ^{3} \theta d \theta \\
& =\frac{2}{3} M R^{2} \\
& \text {-s 1 } I_{x}+I y+I_{z}=m z\left(x^{2}+y^{2}+z_{z}^{2}\right) \\
& \operatorname{tam} L \frac{2 m n^{2}}{3} \\
& \begin{array}{l}
\operatorname{cosec} \\
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
\rightarrow x_{r}^{x} \rightarrow \text { Alloassingor diredo } \\
\qquad \begin{array}{|lll}
\text { Page No. } \\
\hline \text { Date } & 1 & 1 \\
\hline
\end{array}
\end{array}
$$

8.) 9 m.O.I af Unifarm Solid sphere about an aris through its co.m

$$
I_{c m}=\frac{2}{5} m R^{2}
$$

$$
\begin{aligned}
\operatorname{Iom}=\int d T & =\frac{2}{3} \int(d m) x^{2} \\
& =\frac{2}{3} x \int 4 \pi \int_{x=0}^{x} x^{4} d x \\
& =\frac{2}{3} m R^{2}
\end{aligned}
$$

Noteys chollene का m'0 ता क्याद हीगा folid कार
9.) M.O.I of Unifarm triangular plate about base $(A B):$

$$
T_{A B}=\frac{m h^{2}}{6}
$$

Ex:

Find the m.o.I afo unib triangula plate on axis through its diregonal or about the diagonal.
A

$$
\begin{aligned}
I_{P Q} & =\frac{x(m / k) h^{2}}{6} \\
& =\frac{m h^{2}}{6}
\end{aligned}
$$

$$
\begin{aligned}
& l \times b=\frac{k}{l} \times \sqrt{l^{2}+b^{2}} \times h \\
& h=\frac{l b}{\sqrt[l]{l}+b^{2}} \\
& f_{P Q}=\frac{m}{b} \cdot \frac{l^{2} b^{2}}{l^{2}+b^{2}}
\end{aligned}
$$

10.) M.D. i af uniform solid cone about an axis though its e.om and it to the circular bone r

$$
\begin{aligned}
\left(1 \geq \int d d\right. & =\int_{x=0}^{x=h} \frac{(d m) x}{2} \\
\frac{r}{R} & =\frac{x}{h} \\
r & =\left(\frac{R}{h}\right) \cdot x
\end{aligned}
$$

1). M.O.Iaf uniform hollow cone about an axis through its c.o'm and 1^{2} to the circular box.

$$
\tan =\frac{m R^{2}}{2}
$$

$$
I_{A B}=I_{c m}+m d^{2}
$$

where, $d \Rightarrow$ Ir distance b/w two Prollel Iom \rightarrow mio rab axisid body about an arist throughits cro'm
Noters 1) It in applicable to All type afo fody $1-D, 2-D$ and $3-D$
(1) Iii) one af tho two parallel Ariser mest parses through the $10 \cdot \mathrm{~m}$ of the rigid body.
111)

Find the moo. of half dise about on axis through it com ans I I to the plane of wise:
A. 1

$$
\begin{gathered}
I_{\theta}=\frac{m R^{2}}{2} \\
I_{0}=\operatorname{Iom}_{0}+m\left(\frac{4 R}{3 \pi}\right)^{2} \\
\operatorname{Iom}=\frac{m R^{2}}{2}-m\left(\frac{4 R}{3 \pi}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{IAD}= & \operatorname{Dam}_{c m}+m d^{2} \\
& =\frac{2}{5}=\frac{2}{5} m R^{2}+m R^{2} \\
& =\frac{7 m R^{2}}{S}
\end{aligned}
$$

2.) Penpondiculan Aru"s theorean: \Rightarrow

- It is only stpplicable for
laminan esens two dimensional (2 or planerar laminan body)

$$
I_{2}=I_{x}+I_{y}
$$

WWW.GRADESETTER.COM

8

$$
I_{x}=I_{y}+I_{z}
$$

(द)

Find the $m: D \cdot I$ af the ring about ets diamete d_{1} and d_{n}

$$
\begin{aligned}
& I_{x}=I_{y}=D_{\alpha_{1}}=I_{d_{2}}=I_{\text {dianel }} \\
& M R=I_{x}+I_{y}=2 d_{\text {iande }} \\
& I_{2} \\
& I_{\text {dia }}=\frac{m R^{2}}{R}
\end{aligned}
$$

Find the foro. 2 af the dise aboct d_{7}

$$
\begin{aligned}
& I_{2}=I_{x}+I_{y} \\
& \frac{m R^{2}}{2}=2 I_{x}=2 I_{\text {danad }} \\
& I_{\text {din }}=\frac{m R^{2}}{4}
\end{aligned}
$$

$$
I_{x}=I y-I_{\alpha_{1}}=I_{\alpha_{2}}=I d_{9}=I \text { iaan }^{2}
$$

$$
\left(I_{2}=I_{x}+I_{3}\right)
$$

4 Here dramefs is equal so cuealno unite. (Dret this innet ang formade,)
which af the follocoing opxion are coreet.?
(i) $\pi_{z}=\pi_{x}+T_{y}$
(ii) $I_{z}=I_{d 1}+I_{y}$
(iii) $\tilde{d}_{2}=I_{d_{1}}+I d a_{2}$
(iv) $I_{2}=I_{x}+d_{d_{1}}$

Ans

$$
\begin{aligned}
& I_{2}=I_{x}+I_{y} \\
& I_{2}=I_{d_{1}}+I_{d_{2}} \\
& I_{x}+I_{y}=I_{d_{1}}+I_{d_{2}} \\
& I_{2} I_{x}=I_{D_{1}} \\
& I_{x}=I_{d_{1}} \\
& I_{x}=I y \\
& I_{d_{1}}=I d_{2}
\end{aligned}
$$

for 11
All are comect

IF Find the m.O.I plane.
$x^{\prime}(f a)_{2}=\frac{m a^{2}}{6}$

$$
\int \frac{\frac{5(m) a^{2}}{6} \times \frac{1}{4}}{\frac{m a^{2}}{6}}
$$

C

Ex ${ }^{1}$

$$
(\text { Identical disk) }
$$

' ${ }^{\prime}$ ' is the massif complete figure M.O.I af given figure about an axis parsing through the centers θ and perpendicular tother plane al figure is

$$
\left(T_{0}\right)_{2}=1.6 \mathrm{ma}^{2}
$$

1) Find the m. O. I af o the given figure about an anis AB in the plane of efigal.

$$
\begin{aligned}
\left(I_{2}\right)_{0} & =I_{x}+I_{y} \\
1.6 m a^{2} & =2 I_{x} \\
I_{a m}=I_{x} & =0.8 m a^{2} \\
I_{A B} & =0.8 m a^{2}+m(2 a)^{2} \\
& =4.8 \mathrm{ma}^{2}
\end{aligned}
$$

M.O.I af Remaining portion of body aftie Lut: \Rightarrow
\leftrightarrow About the same given Aris \Rightarrow
2
$I_{\text {remaising }}=$ Icrmplete - Tat

m inthe maw af remaining Fart (rafterect)
(8) Fins the m.I. I abthe romaining poston afo the disc about an axis pasing throught 8 'and perpendicule tith plane of

ALA
mases af complete dises

$$
\begin{array}{r}
\Rightarrow \frac{4 m}{3}
\end{array}
$$

WWW.GRADESETTER.COM
manaf out out

$$
\begin{align*}
& m_{2}=\frac{m}{3} \\
&\left(\text { Icomplete }_{0}\right.=\frac{m_{1} R^{2}}{2}=\frac{4 m R^{2}}{6} \\
&\left(I_{c a t}\right)_{0}=\frac{m_{2}\left(R_{2}\right)^{2}}{2}+m_{2}(R / 2)^{2} \\
&=\left(\frac{m R^{2}}{24}+\frac{m R^{2}}{12}\right) \\
& y\left(\frac{m R^{2}+2 m R^{2}}{24}\right) y \frac{m R^{2}}{8}
\end{align*}
$$

$$
\begin{aligned}
\text { Irem }= & \frac{4 m R^{2}}{6}-\frac{m R^{2}}{8} \\
& =\frac{13 m R^{2}}{24}
\end{aligned}
$$

Now: $>$
moid allocit,$I_{\operatorname{con}}=I_{0}-m\left(\frac{R}{\sigma}\right)^{n}$,
co.m ellong plat
$\frac{1+20 t l}{13 / 0} 06$

$$
I_{0}=I_{\operatorname{com}}+m\left(\frac{R}{6}\right)^{2}
$$

WWW.GRADESETTER.COM
(st Choice
Radius of Gyration (c)

$$
\begin{array}{r}
T_{A B}=m k^{2} \\
k=\sqrt{\frac{T_{A B}}{m}}
\end{array}
$$

$$
k=\left(\sqrt{\frac{2}{5}}\right) R
$$

WWW.GRADESETTER.COM
$P \rightarrow$ Point afs Application af ferce

$$
|\vec{\gamma}|=\gamma
$$

WWW.GRADESETTER.COM
(Ist Choice)

$$
\begin{array}{r}
\left|\tau_{0}\right|=\tau_{0}=r F \sin \theta \\
\tau_{0}=F(r \sin \theta) \\
\tau_{0}=F r_{1}
\end{array}
$$

magnifudate.
$r_{1} \rightarrow$ It in the perperdicula distance action.
$E x \rightarrow$

whaten $\vec{r}_{p}=$?
Any

$$
\begin{aligned}
& \vec{\tau}_{p}=\vec{\gamma} \times \vec{F} \\
& =\left(\overrightarrow{r_{A}}-\overrightarrow{r_{2}}\right) \times \vec{F} \\
& \int \vec{\gamma}=\overrightarrow{P A} \\
& \text { 2OA-0, } \\
& { }^{2}{ }_{2} \vec{r}_{A}-\vec{r}_{P} \\
& \begin{array}{l}
\text { सहाँपर इूनूँआ। } \\
\text { Fina-Initial) }
\end{array}
\end{aligned}
$$

WWW.GRADESETTER.COM

$\tau_{\mathrm{H}_{2}}$

$$
2 \vec{r} \times \vec{P} \overrightarrow{\left.r_{2}-\vec{r}\right)} \times \overrightarrow{\vec{F}}
$$

स. A force $\vec{F}=(2 \hat{i}-3 \hat{j}+\hat{k})$ N ir aching at point $P^{\prime} \rightarrow(2 m, 3 m,-1 m)$.

Find the torque beets (\vec{z}) about points

$$
\theta \rightarrow\left(3 m_{1}-1 m, 2 m\right)
$$

Ar 1

$$
\begin{aligned}
& \vec{z}_{Q}=\vec{\gamma} \times \vec{F} \quad \mid \vec{\gamma}=0-i \hat{\imath}+4 \hat{\jmath}-1 \hat{\hat{k}} \\
& \vec{Z}_{Q}=\left|\begin{array}{ccc}
n & (1) & \oplus \\
i & j & k \\
-1 & 4 & -3 \\
2 & -3 & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \vec{Z}_{Q, x}=-5 \hat{l} \\
& \vec{Z}_{Q, y}=-5 \hat{j} \\
& \vec{z}_{Q, z}=-5 \hat{k} \\
& \left|\vec{Z}_{Q}\right|=5 \sqrt{J} N-m
\end{aligned}
$$

ER:

Find the magnitude and direction of torque of gravitation free aloct point ' 0 '. When the projected fall reaches as its max. height.

An

$$
\begin{aligned}
\vec{z}_{0} & =F r t \\
& \Rightarrow m g \frac{R}{2}(-\hat{k})
\end{aligned}
$$

WWW.GRADESETTER.COM
Istchoice Torque af a force about
\& Step: \Rightarrow
1.) First fins the torque of the goon force about any point on the given are's thant then take the component af thin torque along given axis.

Notes
**) Torque af a given force \vec{F} about the given axis in tin il $^{11} \Rightarrow$
I) If applied force (\vec{F}) is Parallel/ An n penally
to the anis

$$
\vec{F} \| A D(a x i s)
$$

WWW.GRADESETTER.COM

2.) If the applied fore enterscet the given aws.

To Foin farce x ore $\left(\overrightarrow{F_{1}}, \overrightarrow{F_{2}}, \overrightarrow{F_{0}}, \overrightarrow{F_{4}}\right)$ are lying in x - yplane

$$
\begin{aligned}
& \overrightarrow{F_{1}} \Rightarrow P_{1}\left(2 m_{1} 3 m\right) \\
& \overrightarrow{F_{2}} \Rightarrow P_{2}\left(3 m_{1}-2 m\right) \\
& \overrightarrow{F_{0}} \Rightarrow P_{3}\left(-2 m_{1}-1 m\right) \\
& \overrightarrow{F_{4}} \Rightarrow P_{4}(2 m, 4 m)
\end{aligned}
$$

1) Find Net torque about z-ax's? ?

Andano.
11) Find the torque about x and y-an ss

Ar:

$$
\begin{aligned}
& \vec{z}_{x \rightarrow \operatorname{anct}}=\overrightarrow{0} \\
& \vec{خ}_{\substack{\text { net } \\
y \text {-an's }}}=\overrightarrow{0} \\
& \vec{z}_{z-a x s}=\text { may or maynot be geo } \text {. }
\end{aligned}
$$

To Four farces corse $\left(\overrightarrow{F_{1}}, \overrightarrow{F_{2}}, \overrightarrow{F_{3}}, \overrightarrow{F_{4}}\right)$ are lying in x - yplane

$$
\begin{aligned}
& \overrightarrow{F_{1}} \Rightarrow P_{1}(2 m, 3 m) \\
& \overrightarrow{F_{2}} \Rightarrow P_{2}(3 m,-2 m) \\
& \overrightarrow{F_{0}} \Rightarrow P_{3}(-2 m,-1 m) \\
& \overrightarrow{F_{4}} \Rightarrow P_{4}(2 m, 4 m)
\end{aligned}
$$

1) Find Net torque about z-a xes?
ii) And the torque about x and y-and

Ar:

$$
\begin{aligned}
& \vec{E}_{x-\operatorname{anct} x}=\overrightarrow{0} \\
& \vec{Z}_{\substack{\text { net } \\
\text { anis }}}=\overrightarrow{0} \\
& \vec{z}_{\text {z-ares }}=\text { may or maynot be zero. }
\end{aligned}
$$

E_{6}

1) Fins the magnitudoof toque af gravitation frock (mg) ans tension in the string about point ' o ' and ie'.
2) Find the magnitude of torque of mg about axis oc ic'

Ar 1

$$
\begin{aligned}
& \left(Z_{\operatorname{rag}}^{0}\right)_{0}=\left(Z_{n g}\right)_{\theta}=m g l \sin \theta \\
& \left(T_{T}\right)_{0}=T \times O=0 \\
& \left(\tau_{\tau} \sin \theta\right) e=0 \\
& \left(r_{T \cos \theta}\right)_{c}=T \cos \theta \times l \rho 10 \theta \\
& \left(Z_{\text {log }}\right)_{\text {reanip }}=0
\end{aligned}
$$

WWW.GRADESETTER.COM

$$
\begin{aligned}
& \left(\vec{Z}_{\text {net }}=\overrightarrow{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\vec{\tau}_{\text {cwo }}\right)_{\text {net }}=-\left(\vec{\tau}_{\text {A-cios }}\right)_{\text {net }}
\end{aligned}
$$बघ्नजा चाएक

\qquad

* Resultant torqueafo many forces aboutginen point : \Rightarrow

$$
\begin{aligned}
\vec{\tau}_{0} & =\vec{r}_{1} \times \vec{F}_{1}+\vec{r}_{2} \times \vec{F}_{2}+\cdots \\
\vec{乙}_{p} & =\left(\vec{r}_{1}-\vec{\gamma}_{p}\right) \times \vec{F}_{1}+\left(\vec{r}_{2}-\vec{\gamma}_{p}\right) \times \vec{F}_{2} \cdots \\
& =\left(\overrightarrow{r_{1}} \times \vec{F}_{1}+\vec{r}_{2} \times \vec{F}_{2}+\cdots \cdot\right)-\overrightarrow{r_{p}} \times\left(\vec{F}_{1} \times \vec{F}_{2}+\cdots\right)
\end{aligned}
$$

1) If the rigid body in in translatay equilibrium than the resultant torque of all the force will bo same about all the points in the speer. (If F net $\left.=\overrightarrow{0}\left(\vec{A}+\overrightarrow{F_{2}}+\cdots \overrightarrow{0}\right)\right)$
$\vec{Z}=\vec{Z}=$ same.

$$
\vec{z}_{0}=\vec{z}_{p}=\text { same }
$$

11) If the rigid body is in equillibrion

$$
\begin{aligned}
& \text { in equillibriun } \\
& \left.(\text { Fret })=0 \text { and } z_{\text {net }}^{\prime}=0\right) \\
& \Rightarrow) \text { eD }
\end{aligned}
$$

The rod in in equilibrium

1) Find the value af Normal contact fores at the contact.
ii) Ant the value af friction farce at the contact. Nell singe oi
Ans

Fret $=0$

$$
\begin{array}{c|}
N_{1}=f-(D) \\
N_{2}=m g \quad-(2) \\
(\text { (net })_{B=0} \\
N_{1} \& \sin \theta=m g R / 2 \cos \theta \\
N_{1}=\frac{m g \cot \theta}{2}=f
\end{array}
$$

[x: + B

Fins the minimum value of o' shone that sod romains in equillibriun
A

WWW.GRADESETTER.COM

$$
\begin{array}{|l|l}
& \text { (list choice } \\
\hline
\end{array}
$$

$$
\left(F_{\text {Ne }}\right)=0
$$

$$
N_{1}=l \wedge \sqrt{2}-Q
$$

$$
\mu N_{1}+N_{2}=m g-(2)
$$

fromecoand (10)

$$
\mu^{2} N_{2}+N_{2}=\operatorname{mg}
$$

$$
N_{2}=\frac{m g}{\left(1+e^{n}\right)}
$$

$$
\begin{aligned}
& N_{1} 2 \frac{\mu m g}{\left(1+\mu^{2}\right)} \\
& \left(\tau_{\text {net }}\right)_{B}=0 \\
& \operatorname{mg} \times \frac{\phi}{2} \cos \theta=N, X, \alpha \sin \theta+\mu \cdot N_{1} \times N \cos \theta \\
& (A \in \alpha)
\end{aligned}
$$

$$
m g \frac{\cos \theta}{2}=N_{1}(\sin \theta+l \cos \theta)
$$

$$
\frac{m g}{2}=N_{1}(\tan \theta+l l)
$$

$$
\frac{m g}{2}=\frac{\mu \log g}{\left(1+\mu^{2}\right)} \quad(\operatorname{ton} \theta+\mu)
$$

$$
\frac{b^{2}+1}{2 l l}-l=\tan \theta
$$

$$
\tan \theta=\frac{\left(1-\mu^{2}\right)}{2 l}:
$$

the Arrangement is in equillifricam. string is massless.

Fins the tension in both the string.
As

$$
\begin{aligned}
T_{1}+T_{2} & =m g \\
T_{2} \frac{3 l}{4} & =\frac{m g \cdot l}{4} \\
T_{2} & =\frac{m g}{3} \\
T_{1} & =\frac{m g r}{} \frac{m g}{3} \\
T_{1} & =\frac{2 m g}{3}
\end{aligned}
$$

WWW.GRADESETTER.COM

* Rotation of rigid body about
fined \Rightarrow Hum

$$
F_{t}=(d m)_{r i} \dot{\alpha}
$$

Torque of fat on (dm)
about ' 0 '.

$$
\begin{aligned}
& =f_{t} \cdot r_{i} \\
& =(\lambda m) r_{i}^{2} \alpha
\end{aligned}
$$

$$
\text { net }=\alpha \int(d m) \partial_{i}{ }^{2}
$$

$\tau_{\text {net }}=\lambda \alpha$

$$
H\left(\overrightarrow{\text { Rent }_{\text {enc }}}\right)_{n=}=\text { Ranis } \vec{\alpha}(\text { Nectoton's lave in }
$$

$$
\left(\tau_{\text {axis }}\right)_{\text {net }}=\text { Taxis } \alpha
$$

$$
\alpha=\frac{d \omega}{d t}=\frac{\omega d \omega}{d \theta}
$$

Notec-

1) If the rigid lody in hindge as its c.0.m then $\vec{a}_{m}=0$
there in no ecceleration

$$
\left(a_{c m}=0\right)
$$

11) If the rigidn iorty net hindge as els cam. The $c .0 \cdot \mathrm{~m}$ will diloays mone along circulan path

Rotati $\longrightarrow r_{H}=T_{H} \alpha$

$$
\text { Thin } \rightarrow F_{\text {net }}=m a_{0 m}
$$

(x) x^{2}

\therefore Rod in restoreleocel from rent from horizontal position.

1) Find the Initial angular aec n af red.
ii) Find the force excited by hinge on the rode.
An.

$$
\begin{aligned}
& \tau_{H}=T_{H} \cdot \alpha \\
& I_{H}=\frac{m l^{2}}{3} \\
& m g \frac{m l^{2}}{2} \cdot \alpha \\
& \alpha=\left(\frac{39}{2 l}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { in) } F=m a_{\text {ort }} \\
& N_{x}=m(\text { (am) })_{x}=0 . \\
& m g-N_{y}=m\left(a_{m m}\right) \\
& m g-N y=m x=\frac{1}{2} \times \alpha \\
& \begin{aligned}
m g-N y & =m \times \frac{l}{2} \times \frac{7 g}{2 l} \\
N y & =m g-\frac{3 m g}{4}
\end{aligned} \\
& \begin{aligned}
m g-N y & =m \times \frac{l}{2} \times \frac{7 g}{2 l} \\
N y & =m g-\frac{3 m g}{4}
\end{aligned} \\
& N_{y}=\frac{m g}{4}
\end{aligned}
$$

The string does not slip oven The pulley. String is maskers.

The system is released from

1) Find the aec af g the block:
ii) Fins the Argue velocits af the pulley of any time 't 'form thestenting $t=0$.
A.

$$
\begin{align*}
& \tau_{H}=I_{H} \alpha \\
& T R=\frac{m R}{2} \cdot \alpha \\
& T=\frac{1}{2} m(R \alpha) \tag{1}\\
& m g-T=m a \tag{2}
\end{align*}
$$

$$
a=R \alpha
$$

$$
\text { From(i) } \rightarrow\left\{\begin{array}{l}
T=\frac{m a}{a} \\
m g-T=m a
\end{array}\right\} a=\frac{2 g}{3}
$$

$$
\begin{gathered}
\alpha=\frac{a}{R}=\frac{2 \theta}{J R}=\text { con stan } \alpha \\
\omega=\omega_{0}+\alpha t \\
\omega=\alpha t \\
\omega=\left(\frac{2 g}{3 R}\right) t
\end{gathered}
$$

Ex.:

Rod is releaedefor rat form given position.

1) Find the Initial Angela aec ${ }^{n}$ af e rod and the farce exacted by hinge af the
rod.

WWW.GRADESETTER.COM

$$
\begin{aligned}
N_{x}-m g \sin \theta & =m \times(2 a m)_{x} \\
N_{x} & =m g \sin \theta \\
N_{x} & =\frac{3 m g}{5}
\end{aligned}
$$

None,

$$
\begin{aligned}
m g \cos \theta-N_{y} & =m\left(a_{m}\right) \\
N_{y} & =m g \cos \theta-m\left(a_{m}\right) \theta \\
& =m g \cos \theta-\frac{m t}{2} \times \frac{3 g \cos \theta}{2 d} \\
N_{y} \theta & =\frac{m g \cos \theta}{4} \\
& =\frac{m g}{5} \\
N & =\sqrt{N_{x}^{2}+N_{y}^{2}} \\
& =\sqrt{\left(\frac{3 m g}{5}\right)^{2}+\left(\frac{m g}{5}\right)^{2}} \\
& =\frac{m g}{5} \sqrt{10}
\end{aligned}
$$

1 Find the force exerted by the linslge on the Femisuing Initially

Ans

$$
\begin{aligned}
& \tau_{H}=I_{I+} \alpha \\
& \text { Norse, } \\
& \frac{2 m R^{2}+\cos m R^{2}}{2} \\
& \text { Now. - } \\
& =2 m R^{2} \\
& \lambda_{H}=\operatorname{Icm}+m r_{1}^{2} \\
& =I_{0}-m\left(\frac{q / r}{\pi}\right)^{2}+m r^{2} m\left(\frac{2-r}{\pi}\right)_{d}^{2} \\
& =m R^{2}+m r^{2}=2 m R^{2} \\
& \Sigma_{H}=\tilde{I}_{H} \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(q_{n}\right)\right)_{c} \sin 6 . \\
& 22 \frac{g}{2 \gamma} \\
& n g-N y=m\left(a_{m m}\right) t \cos \theta \\
& (a n)_{x} \cos \theta \\
& N y=m g-m r_{1} d \cdot \cos \theta \\
& =m g-m r,\left(\frac{g}{2 r}\right) \frac{r}{r_{1}} \\
& N y=\frac{m g}{2}
\end{aligned}
$$

WWW.GRADESETTER.COM
(st Choice

$$
H \cdot C \cdot V \Rightarrow 5+5
$$

$$
\begin{aligned}
x_{x} & =m\left(a_{c m}\right)_{A} \sin \theta \\
& =m \times \frac{x, g}{28} \cdot \frac{2 x}{\sqrt{2 x} 1}
\end{aligned}
$$

$$
\Delta=\sqrt{\Lambda_{x}^{2}+\Lambda s_{y}^{2}}
$$

Rotational kinctie conagy of a
 oover asillopel

$$
K \cdot E_{-} \text {if an element }
$$

$$
(\partial m)!\Rightarrow
$$

स्ल

$$
\begin{aligned}
d K & >\frac{1}{2}(d m) r_{i}^{2} \\
(K-E)_{R} & =\frac{1}{2} \int(d m) \gamma_{i} \omega^{2} \\
& =\frac{1}{2} \omega^{2} \int(d m) r_{i}^{2} \\
(K-E)_{R} & =\frac{1}{2} \text { Janip }^{2} \omega^{2}
\end{aligned}
$$

$$
\begin{aligned}
K \cdot E & =\frac{1}{2} m v^{2} \\
(k \cdot E)_{R} & =\frac{1}{2} P \omega^{2} \\
& =\frac{1}{2} m y^{2} \times\left(\frac{k}{y}\right)^{2} \\
& =\frac{1}{2} m v^{2}
\end{aligned}
$$

Noth: $\rightarrow \mathrm{SE}$, K.E of a body in Combined Rotational and Translation -

$$
K \cdot E=\frac{1}{2} m V_{c m}^{2}+\frac{1}{2} \sum_{c m} w^{2}
$$

WWW.GRADESETTER.COM

Ex!
(St choice
DKo-AO

$$
\begin{aligned}
& (K-G)_{R}=\frac{1}{2} \operatorname{In} \omega^{2} \quad\left\{\operatorname{IAD} \operatorname{Iam}+\omega^{2}\right. \\
& \frac{-1}{2}\left(\operatorname{Iam}+m r^{2}\right) \omega^{2} \\
& =\frac{1}{2} \operatorname{som} \omega^{2}+\frac{1}{2} m\left(\gamma \omega^{2}\right) \\
& =\frac{1}{2} \operatorname{Im} \omega^{2}+\frac{1}{2} m V_{c m}^{2} \\
& \text { Sc, }(1-E)_{R}=\frac{1}{2} \tau_{c_{m}} \omega^{2}+\frac{1}{2} m V_{c m}^{2}
\end{aligned}
$$

Rod is released loom rest from horizontal Papition Find the Angular velocity of the ret at the moment the rod becomes vertical.

1 Irindthe velocids af point ' A ' ' af the od at the moment the sad becomes vesical.

$$
\begin{aligned}
0+m_{\times 2} \frac{l}{2} & =\frac{1}{2} T_{1} \omega^{2}-0+0 \\
\operatorname{lig}_{n N} \frac{0}{2} & =\frac{1}{2}\left(\frac{\times n^{2}}{3}\right) \omega^{2} \\
\omega & =\sqrt{\frac{39}{l}} \\
V_{A A} & =4 \sqrt{\frac{5 g}{1}}=\sqrt{5 g l}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\\
v=r \alpha
\end{array}\right.
$$

区

Finfthe forminioum herizontal relocity givan to proticb afmans' m ' at the lowent point shoue that the rod and porticle con complete the vaticle circh., w.e. Theore:-

WWW.GRADESETTER.COM

$$
\begin{aligned}
& \text { tingl }=\frac{2_{m t^{2}}^{2}}{-2 \times 7} \times \frac{4^{2}}{1^{2}} \\
& u \sqrt[3]{\sqrt{2}+} u=\sqrt[3]{\frac{g l}{2}}
\end{aligned}
$$

(x)

Rodisplightly pursed find the Angula ae.n and angula velocits of the rod an an anguilar posidon ' θ ' with the vertical.

$$
\begin{aligned}
& \tau_{H}=I_{H} \alpha \\
& \sin \left(\frac{t}{2} \sin \theta=\frac{x l^{2}}{3} \alpha\right. \\
& \alpha=\frac{9 \sin ^{2}+3}{2 l} \\
& =\frac{3 g \sin \theta}{2 l} \\
& 82 \\
& \text { methet-sf' - } \\
& m g h 2 \frac{1}{2} I_{1} \omega^{2} \\
& \left\{h=\frac{l}{2}-\frac{l}{2}\right. \text { cor }
\end{aligned}
$$

Ans
in

$$
\begin{aligned}
\operatorname{sig} \frac{1}{t} \cdot(1-\cos \theta) & =\frac{1}{2} \frac{m d^{2}}{3} \cdot \omega^{2} \\
\omega^{2} & =(1-\cos \theta) \sin \frac{1}{l}
\end{aligned}
$$

$\xrightarrow{26-)}$ methat-2

$$
\begin{aligned}
& \alpha=\omega \cdot \frac{d \omega}{d \theta} \\
& \int_{0}^{\omega} \omega d \omega=\sqrt{\sigma} \alpha d \theta \\
& \int_{0}^{\omega} \omega d \omega=\frac{3 g}{2 l} \int_{\theta=2}^{\theta} \sin \theta d \theta \\
& \frac{\omega^{2}}{2}=\frac{3 g}{2 l}(-\cos \theta)_{0}^{\theta}=\frac{3 g}{l}\{(-\cos \theta)-(-\cos \theta)\} \\
& \omega^{2}=\frac{3 g}{l}(1-\cos \theta)
\end{aligned}
$$

$\dot{C}+1$

Find the valreaf is' for which the friction freon the sos by tho surface is zero.

$$
\left.\begin{array}{c}
\left.f_{s}=m\left\{\left(a_{c m}\right) e \sin \theta\right)-\left(\theta_{c m}\right) \cos \theta\right)=0 \\
h\left(\cos \theta=\frac{2}{3}\right.
\end{array}\right)
$$

* Force couple \Rightarrow when two force af equal magnitude act on different points and in opposite direction these fores

$$
\begin{align*}
& \left\{\begin{array}{l}
z_{\text {net }}=? \\
n_{1}, A, D, m
\end{array}\right\} \\
& \left(\tau_{\text {net }}\right)_{A}=0+A Q(\text { c. } \omega \text {) } \\
& \left(\tau_{\text {net }}\right)_{B}=0+\mathrm{Fl} \tag{c.w}\\
& \left(z_{n} e t\right)_{p}=-F_{x}+F(l+x) \\
& =\mathrm{Fl}:(c \cdot \omega) \text {) } \\
& \left.\left(Z_{\text {net }}\right)_{m}=\frac{\rho l}{2}+F \cdot \frac{l}{2}=\mathrm{Fl} \text { (coco }\right)^{2} \tag{2}
\end{align*}
$$

IV Here we see that, in force couple Torque (z)"about all the point in same."

Note $\rightarrow 1$ The couple cause the rarectional motion in the body, 2.) The oreffect af couple is known as its moment. The ornament af couple is equal to the product of magnitude of any force ant perpendicellen distance between the fores, Dame as torque.

$$
\text { moment af couple }=\hat{F}_{1}
$$

(Sst choice) Angular Momentum ($\left.\vec{L}_{0}\right)$
It in defined as moment af linear momentum about any point arabout any axis.

$$
(\text { linear monenentem } \Rightarrow \vec{p}=m \vec{v})
$$

Angular momentom of a poole about Ene (any) point.

$$
\begin{aligned}
& \nu \Rightarrow \omega \\
& a \Rightarrow \alpha \\
& m \Rightarrow \text { I } \\
& A \Rightarrow \text { r } \\
& P \Rightarrow L \\
& \vec{p}=m \vec{v}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}_{\text {net }}=\frac{d \vec{P}^{t}}{d t} \\
& \vec{Z}_{\text {net, ext }}=\frac{d L}{d t}
\end{aligned}
$$

$$
\vec{L}_{0}=\vec{\gamma} \times \vec{p}
$$

$\vec{p}=m \vec{v}$

$$
\left|N_{0}\right|=p_{0} r_{1}
$$

(where $\left.\alpha_{1}=r \sin \theta\right)$

F: A ballaf in' is projected with Initial velocity x ' ' and arts so' with horns onatal. 1) Fins the angle moment om af the boll when the tob boll reaches as with more deform maximum height: -

$$
\left(L_{0}=P_{r 1}\right)
$$

Abl in released from rest from catoin height at time $f=0$, Find the angular momentum of the tho ball ant any 7^{\prime} 'about point ' 0 '.

$$
\begin{aligned}
& L_{0}=P / A \\
& L_{0}=m u \cos \theta \cdot \frac{u^{2} \sin ^{2} \theta}{2 g} \\
& \overrightarrow{L_{0}}=L_{0}(-\hat{k}) \\
& t=0 \text { rect } \\
& \text { sig } \\
& \log _{6 \rightarrow \infty}
\end{aligned}
$$

$$
L_{0}=m(g t)-b
$$

Angular momentem af a rigid body sotating about pixed Arvists

$$
\begin{aligned}
L_{\text {nos }} & =\sum \text { mis } \theta \\
L_{\text {aris }} & =\sum \text { minir }_{i} \\
& =\sum m_{i} n_{i}{ }^{2} \omega
\end{aligned}
$$

$$
L_{\text {axis: }}=\text { Lanis } \omega
$$

$$
\vec{L} \text { an's }=\text { Tanis } \vec{\omega}
$$

Angulax momentiem af particle about ywon ofis: \Rightarrow

1) Prost find the ongula momexton of the parich about ary point on the given ansis. thon take the compononk af thin Angula momention along given axeis.

$$
\overrightarrow{l_{\text {axi }}}=\left(\overrightarrow{l_{0}} \cdot \hat{n}\right) \hat{n}
$$

* Angular momentum of a porhirle about given axis is 'zero'" \Rightarrow
\Rightarrow (1) I/ $\vec{P} \|$ to and
\rightarrow (II) If the lineal motion af particle. A Intersects the Anis AB.

WWW.GRADESETTER.COM
Angular monention af a

$$
\left.\begin{array}{l}
\vec{L}=\vec{r} \times \overrightarrow{\mathrm{P}} \\
(\vec{L} \cdot \vec{\gamma}=0 \\
\vec{L} \cdot \vec{p}=0
\end{array}\right)
$$

Neters for arose see Reonide (page-412)
The angular momentum about centre "e'af the circb:-

$$
\begin{aligned}
L_{c} & =r \times P \\
& =r \times m r \omega \\
& =m r^{2} \omega \hat{k} \quad
\end{aligned} \quad \begin{aligned}
& \text { xhere:- } \\
&|P|=m v \\
&=\text { mrco }
\end{aligned}
$$

- Argula momentum af a rigid body in Combined motion:- (Translational + Rotational)

$\overrightarrow{r a m} \rightarrow$ Dosition vactar of Co.m af rigid body

0

(Pere translation (obital nomonti.) of ferbed x som $\mathrm{c} \cdot \mathrm{O} \cdot \mathrm{m}$)

$$
\vec{L}_{\mathrm{CM}}=\vec{L}_{\text {on }} \vec{\omega}+\overrightarrow{\hat{x}_{\mathrm{c}} \times m \overrightarrow{v o m}} \mid
$$

Rotationad Angulamoment Torslational A.m da apa.lety ab out fied aris.

WWW.GRADESETTER.COM
(st Choice

$$
\vec{L}_{0}=\overrightarrow{L_{c m}}+\vec{\varepsilon}_{m} \times m \vec{V}_{c m}
$$

F. $\overrightarrow{\mathrm{L}} \mathrm{Cm} \Rightarrow$ Angular momentrom of sayyid body with respect to coin *(It is "not" with respect to Point y^{\prime} ")

$$
\left.\vec{V}_{c m}=\operatorname{Iom} \vec{\omega}\right)
$$

$\vec{r}_{c m} \times m \vec{V}_{c m} \Rightarrow$ Angular momentum af c.o.m w.r. st - point O^{\prime}.

$$
\begin{aligned}
& \overrightarrow{L_{0}}=\vec{\gamma} \times \vec{p} \\
& \frac{d L}{d t}=\vec{r} \times \frac{d \vec{P}}{d t}+\frac{d \vec{r}}{d t} \times \vec{P} \\
& \begin{array}{l}
=\vec{r} \times \vec{P}+\vec{P} \vec{P}>0 \\
=\vec{P}|=m \vec{N} 1|
\end{array}
\end{aligned}
$$

It choice Principulaly Conservation al
Angular Momentum: \Rightarrow

If the net external torque oetring on the system about any point, about any axis is zero. The Angular momentum af syst km xes will remain conserved or constant along that point on that Anis.

$$
\text { If } \begin{aligned}
& \vec{z}_{\text {net, ext }}=\overrightarrow{0} \\
& \overrightarrow{L_{\text {syst }}}=\text { constant } \\
& \vec{L}_{i}=\vec{L}_{f}=\text { same. }
\end{aligned}
$$

Ho
V Angular Empulse(\vec{J})

$$
\left.\overrightarrow{\Delta L}=\vec{L}_{f}-\vec{L}_{i}=\int_{\vec{L}}^{\text {sol }_{1}} d \vec{L}=\int_{t_{1}}^{t_{2}} \overrightarrow{L_{1}} d \vec{z} \Rightarrow \frac{d \vec{L}}{d t}\right) \text { Areaaf } \tau \text { - tgraph }
$$

Angular Impulse

$$
\vec{J}=\overrightarrow{\Delta L}=\vec{L}_{f}-\vec{L}_{i}^{\prime}=\int_{t_{1}}^{t_{2}} \vec{z} d t
$$

Angular -Impulse
momentum theorem:

$$
\vec{J}=\vec{Z}_{\text {axis }}(\Delta t)
$$

(st Choice

* Note: \rightarrow Graph af $\bar{z}-t$: \Rightarrow

Ex:

Before collision rod was at rest.
A particle af mars on? strikes the end af herat with velocity u and sticksto the red after collision.

1) Find the Angula velocity af the system (ra dst paric b) Just after collision. consaridion af drigula memonten.

$$
\begin{aligned}
& \text { C.O.A.M af system }\binom{\text { (rod + Partider }}{\overrightarrow{L_{i}}=\overrightarrow{L_{f}}} \geq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { j.D.C }=\text { J.A.C } \\
& \frac{\Phi_{20 d}+m_{2} \cdot \mu l}{\varsigma}=\left(T_{H}\right)_{\text {sys }} \omega \\
& m_{2} u t=\left(\frac{m_{1} l^{2}+m_{2} l}{l}\right) \omega \\
& \omega=\frac{m_{2} u}{l\left(\frac{m_{1}}{3}+m_{2}\right)}
\end{aligned}
$$

区为
(Nothmoge)

Patirb and rod are on Smooth herizontal surface. Ratcoas Initially at read before collision. Porticl of mans ' m ' staiker the rofwith velocity U'. Ans stick to the nos Aften collision.
Arsi: 1) Linea momentem of the system in consened for

$$
\begin{aligned}
\text { Nove again is muto } & =(2 m) v_{o m}:(\text { Ty linear momentox } \\
v_{c m} & \left.=\frac{1 u}{2} \quad: \quad \text { conservation. }\right)
\end{aligned}
$$

WWW.GRADESETTER.COM
conscrvation of Angula momentom about c (c.o.m) of oot:-

Cos

$$
\begin{aligned}
& m u+0=2 m V_{c m} \text { (cion inea momeatera } \\
& V_{\text {com }}=\frac{4}{2} \\
& -7
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\$Nou: -
C.O.A.M about ic' CO.M of rod:-

$$
\begin{aligned}
& 0 \infty+\max \frac{l}{4}=\operatorname{Icm}_{\mathrm{cm}} \omega+m v_{\mathrm{cm}}\left(\mathrm{ram}_{\mathrm{cm}}\right) \\
& \frac{m u l}{4}=\left(\frac{m l^{2}}{12}+m\left(\frac{l}{8}\right)^{q}+m(f)^{q}\right) \omega+ \\
& (2 m)\left(\frac{4}{2}\right)\left(\frac{9}{8}\right) \\
& m a \frac{l}{4}-\frac{m a l}{8}=(11) \omega
\end{aligned}
$$

conclerion: \rightarrow we get same result to conerk any point.

Tn the above audition fins the point ' p 'whoso velocity in zeionfo्वांक $\left(c_{1}\right) \rightarrow$

$$
\begin{aligned}
& \text { van } 2 x \omega
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{u / 2 \times 11 l}{12 u}=\frac{11 \ell}{24}
\end{aligned}
$$

In the above question fond the -imentak the point c : to rotate through an Angle $1 /{ }^{\prime} 2^{\prime \prime}$. At the same Distance what in the speed of Hive P ecfich

$$
\begin{aligned}
& \text { d. } \frac{\pi}{2}=\theta=\cot +\frac{1}{2} d f^{2} \\
& t=\frac{\pi}{260} \\
& =\frac{\pi x+46}{2 \times 12047} \Rightarrow \frac{\pi \times 114}{2 \times 124}
\end{aligned}
$$

$$
\begin{aligned}
& \text { speed }=v_{c}=\sqrt{v_{c m}^{2}+(r \omega)^{2}} \\
= & \sqrt{\left(\frac{4}{a}\right)^{2}+\left(\frac{d}{8} \times \frac{12 y}{110^{\circ}}\right)^{2}}
\end{aligned}
$$

WWW.GRADESETTER.COM ${ }^{-}$
wione

Rodand particl as on smooth horizondel siefoce - Red in Duntully at reat lefore collision. Iund afte collision portiles comen to reat ans the callision b/co the porkele and ros is clasfic.

1) Fins the ratioalf $\frac{m_{1}}{m_{2}}=$?

11]. Find the Angula relocity af the rodjent after collision.
Coysin Cio.A.M about ' 'C'.

$$
\begin{align*}
& 0_{r a t}+m_{1} u \times \frac{l}{2}=0+T_{o m} \omega+0 \\
& h
\end{align*}
$$

From C.O.L. M

$$
\begin{array}{r}
m_{1} u=m_{1} \times 0+m_{2} v_{c m} \\
v_{c m}=\frac{m_{1} \cdot u}{m_{2}} \\
e=1=\frac{V_{n}-0}{u} \\
1=\frac{\frac{1}{2} 10+V_{m m}}{u} \\
v_{m}+\frac{1 \omega}{2}=U \tag{3}
\end{array}
$$

Thon eq (1), (i1) ans (ii0)

$$
\frac{m_{1} 4 t}{m_{2}}+\frac{\frac{3}{b} m_{1} 4}{m_{2} x^{2}}=d t
$$

Anothor Dientical difk is co-Inetiallyplaces on the firgt disk. Find the common Angulan velocits of the difk' (surfoces are rough.)

WWW.GRADESETTER.COM

Iritial Angela velacity $=\omega_{0}$.
Initields cirula (dipe end loy). Systes ratale with Angula velocing ($\mathrm{cos}_{\mathrm{n}}$) in Antíclock wise direeko.

Now th
circumberene al stats teenning tallong the
Relaine to the diskereiral welocity av!! clanne to the disk(orcircula platifome) in
the Same direchon(Anti-dakecise.
Find who neme Angular velor
a. r. do grount.
anus.

$$
\begin{aligned}
& I=\frac{m_{1} R}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \omega=\omega_{0}-\frac{m_{2 R} \cdot \frac{R}{R}}{\left(T+m_{2} R^{2}\right)} \\
& \omega=\omega_{0}-\frac{m_{2 R} \cdot \frac{R}{R}}{\left(T+m_{2} R^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\omega O}_{B_{1}, g}=\vec{\omega}_{B, g}-\vec{\omega}_{D, g} \\
& \vec{\omega}_{\pi, g}=\vec{\omega}_{B, D}+\overrightarrow{\omega D}_{D, g} \\
& \vec{\omega}_{r e l}=\frac{V_{r e l}}{R}
\end{aligned}
$$

where,

$$
T=\frac{m_{1} \pi^{2}}{2}
$$

WWW.GRADESETTER.COM

Trually the flippling b/w blak and the cylinde in secererssess ans the block is sepenated from the eylinver. Find the velocity of the block ' V ' on the sceond surface.

Intially che cylnde wosat reat.
nethos $1!\Rightarrow$ consaration of \quad thons $A \cdot M_{\rightarrow}$

about poinf 0 ".
 shifroing is whensered than:$V_{1}=R \omega$

$$
\begin{aligned}
& m v R=\frac{m_{1} R^{2}}{2} c+m v_{1} R \\
& \Rightarrow \\
& m v R=\frac{m_{1} R}{2} \cdot v_{1}+m v_{1} R \\
& v_{1}=\frac{m v R}{\left(\frac{m R}{2}+m R\right.}
\end{aligned}
$$

i) Tins the maximum ${ }^{\text {acech of the treck so thet }}$ the block doen not glip with the sufere of truek
11) Find the minimuon value of oecn of trock s that the minimum value af oec ${ }^{n}$ af trock

WWW.GRADESETTER.COM

As

ma> $\left(f_{s}\right)_{\text {max }}$ $m a>f_{L}$ $m a>l l m g$
$a>\mu g$

$$
a>5 \mathrm{~m} / \mathrm{ks} .
$$

$$
\left(\vec{Z}_{\text {not }}\right)=0, F_{n} t=0
$$

$$
\left.\begin{array}{l|l}
r_{m g}=0 \\
r_{F}=0 \\
r_{f s} \neq 0
\end{array} \right\rvert\, \quad r_{f}+z_{N}=0
$$

WWW.GRADESETTER.COM
Istchoice Rolling motion
Rotation + Translation.

WWW.GRADESETTER.COM

WWW.GRADESETTER.COM
2. Pane calling on moving horizontal surfer \Rightarrow

Note: \Rightarrow

$$
P_{0} \mapsto r_{C m}-R \omega
$$

$$
\begin{gathered}
V_{P}=V_{Q} \\
V_{c m}-R_{\omega}=V_{1}
\end{gathered}
$$

Www.gradeschoicer.com

1) Uniform Pire Relling \rightarrow

$$
\begin{aligned}
\Rightarrow \vec{V}_{o_{m}} & =\text { Cons } \tan t \\
\overrightarrow{t a}_{0 m} & =\overrightarrow{0}
\end{aligned}
$$

14) Non-Uriform/accelerated Pure rolling:-1

body

WWW.GRADESETTER.COM

writ. Corm
(Pure Rolling)
Pure translator

No slipping (pare rolling)
$a_{0 n}-R \alpha=0$

$$
G_{a m}=R \alpha
$$

$$
a_{6}=0
$$

* Direction af f friction

1) + est methods: \Rightarrow

Find the value of friction fare at the contact pointaf ring.
Find the oc of coom of ring.

$$
\begin{align*}
& \text { step- } 1!\rightarrow \\
& (F R-f R)^{-1 \alpha}=m R^{2} \alpha \text { (Atconfe) } \\
& F-f=m(R \alpha) \tag{-1}\\
& \text { Step } 2!\rightarrow \\
& F+f=m a_{a m} \tag{2}
\end{align*}
$$

Step 3: \Rightarrow

$$
a_{c m}=R \alpha
$$

3. λ Condition of no slipping at all contacts or constraint relation".

Ex: ${ }^{2}$

Step $1: \rightarrow$

Step IT:

$$
\begin{align*}
& f P \times R=m R^{R} \alpha \quad \text { (At cantre) } a_{m}>R \alpha \\
& f=m(R \alpha) \tag{D}
\end{align*}
$$

$$
\begin{equation*}
F-f=m \mathrm{a} / \mathrm{om} \tag{2}
\end{equation*}
$$

Nore

$$
\left.a_{a m}=\frac{f}{2 m} \right\rvert\, \text { iें }
$$ खंही हैं

Find the oc n of comm and foist direction value af function.

3 ep $1: \rightarrow$

$$
\text { step II: } \rightarrow
$$

Now,

$$
\begin{align*}
& f-f=\frac{2}{5} m a_{m} \\
&+ \\
& 2 f=\frac{m a_{a n}-\frac{2}{5} m_{a_{m}}}{5} \\
& 2 f=\frac{3 m a_{a}-2 m a_{a}}{5} \\
& f=\frac{3 m a_{a n}}{10} \\
& f=\frac{3(f+f)}{10} \\
& f=3 f
\end{align*}
$$

$$
\text { Now: } \rightarrow
$$

SAd eq (II) ans (ID)

$$
\begin{aligned}
& F+7=m a_{a n} \\
& F-f=\frac{2}{5} a_{c m} \\
& 2 F=m_{a n}+\frac{2}{5} m_{a n} \\
& 2 F=\frac{7 m a_{a}}{5} \\
& a_{c m}=\frac{10 \mathrm{~F}}{7 m}
\end{aligned}
$$

$$
\begin{align*}
& f \not R-f \times \not R=\frac{2}{5} m R^{2} \alpha \\
& \theta F-f=\frac{2}{5} m i(k \alpha) \\
& A+f=\text { mam } \tag{2}
\end{align*}
$$

WWW.GRADESETTER.COM

$$
\operatorname{Tam}^{2}=\beta M R^{2}
$$

$$
\Rightarrow F
$$

step: \rightarrow
1.) If $x=\beta R, \quad(f=0)$
11) If F (hosizontal force is applied abone point " x " \Rightarrow friction is fervoud
(Along F)
1i1) If F is applied beloue point ' D '!
\Rightarrow frichisn in boekwerd.

WWW.GRADESETTER.COM

Hen \Rightarrow Concent \Rightarrow Fromea(1) ans (Ti) we see that II in greater than It t C9" so, to balance this friction forces comes is in forward direction.
(a) Solid spheres

$$
\begin{aligned}
& a_{c m}=\frac{F}{m} \\
& F \times \frac{2 R}{5}=\frac{2}{5} m R^{2} \alpha \\
& R \alpha=\frac{F}{m}=a_{\mathrm{cm}}
\end{aligned}
$$

WWW.GRADESETTER.COM
44) Uniform pere rolling \Rightarrow

$$
\left(\vec{V}_{c m}=\text { constant }\right)
$$

In Pue raling (A) कr

$$
v_{0 m}=R W
$$

Find $\left|\vec{v}_{R}\right|=V_{p}$

$$
\left.(f=0) \quad v_{p}=\sqrt{v_{c}^{2}+v_{c m}^{2}+2 v_{c m}^{2} \cos \left(180^{\circ}-\theta\right.}\right)
$$

trind the ri

$$
v_{p}=2 v_{\cos } \sin \frac{\theta}{2}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Te Find the distance travelled by Point ' p '. on the circumperanes of penclly rolling body. costs a th In one complete rotation.

In time $t, \theta=\cot$

$$
\begin{aligned}
& V_{p}=2 V_{c m} \sin \frac{\theta}{2} \\
& \frac{d \phi}{d T}=2 V_{c m} \frac{\sin \frac{\cot }{2}}{\rho} \\
& \rho=\int d s=2 V_{c m} \int_{t=0}^{T=\frac{2 \pi}{\omega}} \sin \left(\frac{\operatorname{\sigma ot}}{2}\right) d t=8 R
\end{aligned}
$$

Oylinda doen not slipon rough horizontal surforel string doe not slin one the cyinde.

1) Find the " a_{1} " and " a_{2} ".

Ato slipping funde.
For cylinde:-

$$
\begin{align*}
& \text { 1) } \tag{D}\\
& \text { T+f }=m_{1} a_{2}-C \tag{2}\\
& \text { T×R-f } \times R=m_{1} R^{2} \\
& \text { Dor block }
\end{align*}
$$

$$
m g-T=m q_{1}-G(7)
$$

No slipping condition:-

collision e/w then wall in perfectily clantist.

1) Pind the velocity ofco.m af spheire at the time/moment w thish when the pore iralling starts in bockword divection.

Pureralling I I A. C
Consaring A.M, 'ant of the sphere A.A.C and apto the stent afe pere rolling aibout poind of contect ' D '.

$$
\begin{aligned}
& \text { muxp }-\frac{2}{5} m \times \frac{R}{R}=\frac{2}{5} m / \frac{R}{R} \times V_{1}+\frac{V_{1}}{B}+v_{1} k \\
& v_{1}=\frac{3 v}{7}
\end{aligned}
$$

WWW.GRADESETTER.COM- -

Finsthe velocits of 0.01 m af sphere at the momant when perecrolling starts -

$$
\begin{aligned}
& v_{1}=R \omega_{1} \\
& \omega_{1}=\frac{v_{1}}{R_{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2}{5} \operatorname{mon}^{x} \times \frac{v_{0}}{2 R_{2}}+p_{1} v_{0} x & =\frac{2}{5} m \phi^{1} \times\left(\frac{v_{1}}{n_{c}}\right)+p_{1} v_{1} x^{\prime} \\
v_{1} & =\frac{6 v_{0}}{7}
\end{aligned}
$$

4) Kinetic brengyaff ralling body withound slipping: \Rightarrow

$$
\begin{aligned}
k_{\text {sol }} & =\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} \operatorname{Ton} \omega^{2} \\
& =\frac{1}{2} m V_{o m}^{2}+\frac{1}{2} \operatorname{Ton}\left(\frac{V_{o n}^{2}}{R^{2}}\right) \\
& =\frac{1}{2} m R^{2} \omega^{2}+\frac{1}{2} \operatorname{Ton} \omega^{2}
\end{aligned}
$$

$$
\begin{aligned}
K_{\text {soll }} & =\frac{1}{2} T_{(}^{1}\left(I_{m}+m R^{2}\right)_{j} \omega^{2} \\
& \left.=\frac{1}{2} I_{p} \omega^{2} \right\rvert\, I_{p}=I_{m+n}+m R^{2} \\
g_{\text {soll }} & =\frac{1}{2}\left(I_{m}+m R^{2}\right) \omega^{2}=\frac{1}{2} I_{p} \omega^{2}
\end{aligned}
$$

स्रृत्वala का एक ही

$$
v_{p}=r_{1} \omega
$$ samespeed होगा।

$\omega=\frac{V_{p}}{\gamma_{1}}=\frac{V_{A}}{2 R}=\frac{V_{m}}{\sqrt{2 R}}$

Pure ratting (Belling without stinging on Rough Inclined Simfoce.

$$
Z_{\text {con }}=\operatorname{Ian} \alpha
$$

$$
f x Q=\beta m R^{R} \alpha
$$

$$
\begin{equation*}
f=\beta m R \alpha \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
m g \sin \theta-f=m a_{c m} \tag{2}
\end{equation*}
$$

$$
a_{\operatorname{con}}=\frac{g \sin \alpha}{(1+\beta)}
$$

$$
f=\frac{\beta m g \sin \theta}{(1+B)}
$$

Ex s

$$
a_{\mathrm{cm}}=\frac{g \sin \theta}{(1+\beta)}
$$

So, In all the position occh is same n is

$$
\left(a_{1}=a_{2}\right)
$$

acc^{n} is deperds on Dnclinication (o) and ' B '

$$
\begin{aligned}
& f=\frac{\beta}{(1+\beta)} m g \sin \theta \\
& f \leq f_{L} \\
& f \leq \mu m g \cos \theta
\end{aligned}
$$

WWW.GRADESETTER.COM
(l) \bar{s} choice

$$
\frac{\beta}{1+\beta} n g \sin \theta \leq A \leq \operatorname{sgc} \cos \theta
$$

$$
\begin{aligned}
& \text { Atrex } \\
& \text { For Pare } \Rightarrow \frac{\beta}{(1+\beta)} \tan \theta
\end{aligned}
$$

on fixed rough
Dnelined
Surfero.

$$
\mu_{m^{n}}=\frac{\beta}{(1+\beta)} \tan \theta
$$

Note: \rightarrow

1) $\operatorname{Ring}_{(m, a)} \rightarrow \frac{\tan \theta}{2}$
2.) $\begin{aligned} \operatorname{dis} C(m, R) \\ \left(B=\frac{1}{2}\right)\end{aligned} \rightarrow \frac{\tan \theta}{>}$
3.) Solid sphene $\rightarrow \frac{2}{7} \times \operatorname{ten} Q$
4. hallow sphen $\rightarrow \frac{2}{5} \tan \theta$.

WWW.GRADESETTER.COM
(st Choice)

$$
\begin{aligned}
N_{\text {am }}^{2} & =0^{2}+2 a_{\text {am }} \times s \\
V_{a m} & =\sqrt{2 a_{\text {am }} 8} \\
& =\sqrt{\frac{2 g \sin \theta(h / \mathrm{sin} \theta)}{(1+\beta)}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{V_{c m}}=\sqrt{\frac{2 g h}{(1+B}} \\
& =\frac{1}{2} a_{c m} t^{2} \\
t & =\sqrt{\frac{2 \beta}{a_{o n}}} \\
& =\sqrt{\frac{a h / \sin \theta}{\sin (1+\beta) g \sin \theta}}
\end{aligned}
$$

$$
t=\frac{1}{\sin \theta} \sqrt{\left(\frac{2 h}{g}\right)(1+\beta)}
$$

who reach first on the ground, spheres a ring and a diskaf same, (m, iv)
as an's) Sphere:-

$$
\because t=\frac{1}{\sin \theta} \sqrt{\left(\frac{2 h}{g}\right)(1+\beta)}
$$

1) Fins the ratio conflation and Rotation K.E. af spite at point ' B '.
a) Find the Rotational K.E. absphe at point $<$
(II) Find the height "'.

WWW.GRADESETTER.COM
where sphere rolle without slipping in ABPart,

An.

in A and B

NQW
At ǐc!!

$$
\frac{k_{\text {ret }}}{}=\frac{2 m g h}{7}
$$

$$
\begin{aligned}
& 7 \quad{ }^{7} \Rightarrow C \\
& \frac{\text { sigh }}{7} \Rightarrow \operatorname{migh}_{1} \text { fo, } \quad h_{1}=\frac{s h}{7}
\end{aligned}
$$

$$
\begin{aligned}
& m g h+0=\frac{1}{2} \operatorname{Im} \omega^{2}+\frac{1}{2} m \mathrm{Vam}^{2} \\
& \text { migh }=\frac{1}{2} \cdot \frac{2}{5} m R^{2}\left(\frac{V_{m}^{2}}{R^{2}}\right)+\frac{1}{2} m V^{2} \mathrm{~mm}_{2} \text { (c) } \\
& \mathrm{mgh}=\frac{7}{10} \mathrm{~m} V_{\mathrm{cm}}^{2} \\
& \left\{\begin{aligned}
& k_{T}=\frac{1}{2} m v_{c m}^{2} \\
& \text { monstangou } \\
& k \in
\end{aligned}\right\}
\end{aligned}
$$

Find the radius of conatre of the Path followed by topmost point of sphere.

$$
d x
$$

$$
\begin{aligned}
R_{1} & =\frac{V_{A}^{2}}{a_{\mathrm{cm}}} \\
& =\frac{-(2 v)^{2}}{\left(v^{2} / R\right)} \\
R_{1} & =4 R
\end{aligned}
$$

There in slipping alow cylende and block

WWW.GRADESETTER.COM

$$
\begin{gather*}
R \text { न्तीa } R \alpha-a_{2}=a_{1}+ \\
a_{1}+a_{2}=R \alpha \tag{2}\\
a_{1}=a_{2} \\
F-(f+T)=m_{1} a_{1}-(3) \tag{3}\\
T-f=m_{2} a_{2} \\
f \times R=\frac{m_{2} R}{2} \alpha-(4)
\end{gather*}
$$

WWW.GRADESETTER.COM

Red inslightly distenbed and stents
on smooth senfoo.
ant the Angula velocits af dod whe
red makes an Argle θ ' with the
Gs mooth? horiz ontal.

On
4

$$
\begin{aligned}
& h=\frac{l}{2}-\frac{l}{2} \sin \theta \\
& h=\frac{1}{2}(1-\sin \theta) \\
& \text { mgh }=\frac{1}{a} I_{0} \omega^{2} \quad\left\{\begin{array}{l}
T_{0}=\frac{m l}{12}+m\left(\frac{l}{2}(000)\right)^{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (0) }= \\
& V_{m} \geq \frac{l}{2} \cos \theta \omega \text { ars }
\end{aligned}
$$

G

WWW.GRADESETTER.COM
(lat choice
\square

Find the velocity af point ic al this bangle,

Ans

$$
\begin{aligned}
\omega=\frac{V_{A}}{x}=\frac{V_{B}}{1+x}=\frac{V_{C}}{r_{C}} & \\
\frac{s}{x}=\frac{10}{l+x} & \text { Now: :- } \\
1+x=2 x & \\
x=l & \\
x & \\
& =l \sqrt{4 l^{2}+} \\
& \text { elan }
\end{aligned}
$$

WWW.GRADESETFER.COM

$$
\begin{aligned}
& \frac{v_{A}}{x}=\frac{r_{e}}{r_{e}} \\
& \frac{s}{I}=\frac{v_{C}}{d \sqrt{S}}
\end{aligned}
$$

$$
V_{c}=S \sqrt{S}
$$

WWW.GRADESETTER.COM

- moment af Inatias

1) Forpoint mass.

2) m. O. I 1 ralling capouis \uparrow and vice ras. 11) $M, O \cdot D$ is a Tensar ouantity
(11.) Type of the arm
3) Parallel aris theorem \Rightarrow

$$
\pi=t_{c m}+m d^{2}
$$

2.) Perpendicular Axis theorem -
(1) This theorem in applicable only for planar bodies.
$\operatorname{Disc}(\sim)$
sphere (x)
11) This theorem say's the moo. λ of the about an axis Ir. To plane af the bothy e) simply the sumab m.O.D of the tod about those tho axis which are lying plane af the bodies.

Concept \rightarrow

$$
\lambda_{z}=D_{x}+D_{y}
$$

WWW.GRADESETTER.COM

1) \gg m.O.D of Ring
i)

i1)

$$
\mathbb{R}=2 M R^{2}
$$

III)

11)

$$
\begin{aligned}
I & =\frac{M R^{2}}{2}+M R^{2} \\
& =\frac{3}{2} M R^{2}
\end{aligned}
$$

WWW.GRADESETTER.COM
\qquad

$$
=\frac{m=\frac{m R^{2}}{2}}{\infty}
$$

iII)

$$
I_{x}=\frac{m R^{2}}{4}
$$

Q4.) Frima disc of massm ons Radion R, a Imalla discaf radion $\frac{R}{4}$ in peronof find out the m. 1 . I of Remaining disk, aboul an ands passing through ontre "̈" ard Ir to plane of the dise.
$80 / 4$

m.O.Taf original dise,

$$
T_{1}=\frac{m R^{2}}{2}
$$

$$
\left\{\begin{array}{l}
\frac{m R^{2}}{2}-\frac{m R^{2}}{32} \\
1 \\
1 \frac{16 m R^{2}-m R^{2}}{3 R} \Rightarrow \frac{15 m^{2}}{32}
\end{array}\right.
$$

M.O. I of Geongnalds, $\frac{10}{2}=\frac{M}{2(6)}$

$$
\begin{aligned}
\circlearrowleft T_{2} & =\frac{1}{2} \cdot \frac{m}{16} \cdot\left(\frac{Q}{4}\right)^{2}+\frac{m}{16}\left(\frac{3 R}{4}\right)^{2} \\
& =\frac{m R^{2}}{512}+\frac{9 m R^{2}}{2.56} \\
T_{1}-I_{2} & =\frac{2 J 7 M R^{2}}{512}
\end{aligned}
$$

Q. 2 .

$$
1 \frac{A A R^{2}}{2} \text { H } \frac{m R^{2}}{4}
$$

iii) $\frac{m R^{2}}{8}$ a) $\sqrt{2} M R^{2}$

WWW.GRADESETTER.COM

Q4.

soln

$$
\begin{aligned}
d i & =\left(\frac{m}{L} d x \int_{L}\left(\frac{x}{2}\right)^{2}\right. \\
& =\frac{m}{4 L} \int_{0} x^{2} d x \\
& =\frac{m L^{2}}{12}
\end{aligned}
$$

WWW.GRADESETTER.COM
4) Howe Hallow aylinder
(i)

$$
I=-m R^{2}
$$

$$
D=2 M R^{2}
$$

III)

In the fig, shown find out the ratio of min. value of v_{1} and v_{2} so that particle con. Just strike the point B.
so ln

Note \rightarrow
Here Tension बको zero and in

$$
\begin{aligned}
& \because \frac{m g}{2}=\frac{m v_{1}^{2}}{l} \Rightarrow v_{1}=\sqrt{\frac{g l}{2}} \\
& \text { ger } \frac{v_{1}}{v_{2}} \geq \sqrt{\frac{g l}{2} \times \frac{1}{2 g l}} \sqrt[n]{\frac{1}{4}}>\frac{1}{2}
\end{aligned}
$$

WWW.GRADESETTER.COM
lstchoice Gravitaction

Newetan's lawe ab Gravitation: \Rightarrow

$$
\begin{aligned}
& F_{1}\left|=\left|F_{21}\right|-D=\frac{G m_{1} m_{2}}{r_{2}} \rightarrow\right. \text { Thin is only valid for } \\
& \text { point abiect } \\
& G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}
\end{aligned}
$$

区e:

When Trick to lean Graritadi oethe formalat $\rightarrow 1$ capital
 leth की " 2 "ंशे onote aरे।

नकरुमी भादरोगा $(\mathrm{g} / \mathrm{O})$ आयन क्ती

so that the Fret on m ès zero.

Naters
-Gravitation field Intenisify dere to

1) G.F.I always tirected towords the centre of Iravity af the bony whase grantationd fied at a point ina vecter quoatity and is is denotel by E.
\qquad
1. Gravitational field Intensity n due to point mans $(M): \Rightarrow$

2) Gr. F.I due to winiform oircular ring (m, R) at any point on ils eris: \rightarrow

$$
E_{p}=\frac{G m x}{\left(R^{2}+x^{2}\right)^{3 / 2}}
$$

$$
\begin{aligned}
& d E=\frac{G(d m)}{r^{2}} \\
& E p=\int d E \cos \theta
\end{aligned}
$$

WWW.GRADESETTER.COM.
(stchore

Note!

$$
\begin{gathered}
\frac{d E_{\rho}}{d x}=0 \\
\left(E_{p}\right)_{\text {max }}=\frac{G \operatorname{GP}(R / \sqrt{2})}{\left[R^{2}+(R / \sqrt{2})^{2}\right]^{3 / 2}}
\end{gathered}
$$

\Rightarrow attheente a/g-ring

$$
\begin{aligned}
&(G p) \text { conbe }=0 \\
& \Rightarrow \text { If } x \ggg R^{2} \\
&\left(E p=\frac{G m}{x^{2}}\right.
\end{aligned}
$$

WWW.GRADESETTER.COM
(st Choice

intivell theorem
shell
1.) Gravitational field Intensity at any point Inside the uniform thin spherical shell in always "zeno."
Spherical shell
2) Per any external point $(r \geqslant R)$ the gravitational field intentens is due to uniform hollow solid sphere is

$$
\text { Four }=\frac{G m}{r^{2}} \quad(r \geqslant R)
$$

- uniform hollow/solid sphere behave external point a point mass for external point
\qquad
At the suffer $(r=R)$

$$
E \sin f 00=\frac{G M}{R^{2}}
$$

Gravitationalfoeld Intensity
3.) $t=$
G.F.I due to Uniform Solid Sphere at Any Point Inside the Spheres

$$
\begin{aligned}
\text { Eindinal } & =E_{1}+ \\
& \Rightarrow \frac{G_{m}}{r^{2}}
\end{aligned}
$$

WWW.GRADESETTER.COM
(st Choice

$$
\begin{array}{r|r}
E_{1} & =\frac{m}{\frac{q}{1}+R^{3}} \cdot \frac{4}{1}+r^{3} \\
& =\frac{m r^{3}}{R^{3}}
\end{array}
$$

at the suffer, $r=R$

$$
\begin{align*}
& \quad \text { Esufor }=\frac{G m}{8 R^{2}} \\
& \rho=\frac{m}{\frac{4}{3} \pi R^{3}} \\
& \rho=\frac{3 m}{4 \pi R^{3}} \\
& \frac{m}{R^{3}}=\frac{4 \pi \rho}{3} \tag{1}
\end{align*}
$$

None from er (1)

$$
\begin{array}{r}
\left.G_{\text {in }}=\left(\frac{4 \pi \rho G}{J}\right) \cdot r\right] \\
(\rho=\text { constant }
\end{array}
$$

$$
((\text { Graph is in page }=11))
$$

Note s. A From shell theorem:-
Af o the point is situated inside the the hollow spherical shellafe uniferm density. The resultant G.F.I on the point mass:is zeros. Because the Gr. Fit I on the point mass dueto various sinall region af the spherical shell will be acting in varioces direction which cancel out each other:

Solid sphee
Find the G.F.D at exteinal Point "P". due to thin sptes.

Ans
(8)
 Sulfor Aिन्ध, को काषाल

$$
\begin{aligned}
m & =\int_{r=R}^{r} d m \\
& =\int_{r=0}^{2} d r \cdot 4 \pi r^{2} d r
\end{aligned}
$$ Small itr".

$$
\Rightarrow 4 \pi \alpha \int_{0}^{R} \gamma^{3} d \gamma
$$

$$
m=\frac{4 \pi \alpha}{\pi}\left(R^{4}\right)=\pi \alpha \cdot R 4
$$

WWW.GRADESETTER.COM

$$
\begin{aligned}
E= & \frac{G\left(\pi \alpha R^{4}\right)}{(2 R)^{a}} \\
& =\frac{G \pi \alpha R^{2}}{4}
\end{aligned}
$$

(5846)

IV

- Correct option:-

'are 'g'ore same thorgs.
(ssachoice)
$E=I D_{x}$ Accn deasto

ouvicurtf by
Concellal Feoche cus.
Relation b/w G.F.i (E) cond

for oron Underistadh:
80,
Intensity af gravitational field at a distance is from the cente af carth is:-

$$
\begin{aligned}
& F=m g \\
& F=\frac{G M m}{r^{2}} \\
& \text { Nome (D) } \\
& F=\frac{G M M I}{r^{2}}=M \text { M }
\end{aligned}
$$

$$
\frac{2}{2 \pi}
$$

 value is are same thingl. so their granhid Nemerically

So, $E=g$ $\frac{r_{2}}{\frac{2 \pi}{6}}=1 / \operatorname{gg}$ value isalso same r Hut they are
propertien.

WWW.GRADESETTER.COM
They are deffeantin their propatios.
(lat Choice

$$
\text { in m }\left\{\begin{array}{l}
\left.F=\frac{F M E}{F}=m g\right)
\end{array}\right.
$$

For Uniform spherical shell

4. For Uniform Solid Sphere: \rightarrow

WWW.GRADESETTER.COM
(Istchoired Accn n due fo gravity
1.) \& With height \rightarrow vication of acc", due to gravity. No ", ",

$$
\begin{align*}
& g_{h}=E_{h}=\frac{G m}{(R+h)^{2}} \tag{-1}\\
& g_{Q}=\frac{G m}{R^{2}}
\end{align*}
$$

$-\bar{c}$

Noters If $h \lll \ll \mathbb{R}$

With depth: \rightarrow

$$
g_{\beta}=\frac{G M}{R^{2}}
$$

$$
\begin{aligned}
g_{\text {depth }} & =\frac{G m}{R^{3}} \cdot(R-d) \\
& =g_{s}\left(\frac{R-d}{R}\right) \\
g_{\text {depth }} & =g_{\beta}\left(1-\frac{d}{R_{e}}\right)
\end{aligned}
$$

3.) * With shapeafo eaith

$$
\begin{aligned}
& \left(g=\frac{G m}{R 2}\right) \\
& g=\frac{G \cdot 4 \pi R^{3} \rho}{3 R^{2}}
\end{aligned}
$$

$$
g=\left(\frac{-4 \pi G \rho}{3}\right) R \quad r \quad g 2 \frac{4}{3} \pi R \& G
$$

45) Dueto Rotation af ecrith: \rightarrow
(Coith latitude)

$$
\begin{gathered}
\left(g_{p}\right)_{\text {effective }}=g-\omega^{2} R \cos ^{2} \phi \\
\left(m g_{p}=m g-m R \omega^{2} \cos ^{2} \phi\right) \\
\text { At role }\left(\phi=90^{\circ}\right) \\
g_{p}=g \\
\text { At equatg }(\phi=0) \\
\text { gra } g_{\text {equa }}=\left(g-0^{2} R\right)
\end{gathered}
$$

www.GRADESEffCaiceom
Note $: \rightarrow$
At ot equate: \rightarrow
(Condition for af weight lesses.)

$$
\begin{gathered}
g=0 \\
g-0^{2} r=0 \\
\omega=\sqrt{\frac{g}{R}} \\
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{R}{g}}=84.6 \text { mind }
\end{gathered}
$$

Concept: \rightarrow If earth rotecte cone round ripest in 84.6 min then the prison who stand on the sole ap the coith feel weight.
lersners.

WWW.GRADESETTER.COM
(lsachoice

$$
\text { of } A R R^{\circ}-\Delta U=w_{\text {ent }}
$$

Change in Gravitational P.E \Rightarrow
(Potential onerges)

$$
\Delta U=-\omega_{c}=-\omega_{\text {gravity }}=\operatorname{cosev}_{s}-u_{i}
$$

* $B \rightarrow C$

$$
\begin{aligned}
& W_{\text {gavity }}=\int \vec{F} \cdot d \vec{r} \\
& =-\int_{r_{1}=r_{1}}^{r=r_{q}} \frac{G m_{1} m_{2}}{r^{a}} d r \\
& \Rightarrow \operatorname{Gim}_{1} m_{n}\left[\frac{1}{\gamma^{\prime}}\right]_{\gamma_{1}}^{\gamma_{2}}=G m_{1} m_{2}\left(\frac{1}{\gamma_{2}}-\frac{1}{\gamma_{1}}\right) \\
& A D=54 \mathrm{Bg} \\
& D \text { © }=\omega_{\text {gravity }}^{801}=G m_{1} m_{2}\left(\frac{1}{\gamma_{2}^{2}}-\frac{1}{\partial 1}\right)
\end{aligned}
$$

WWW.GRADESETTER.COM
(sschorice

$$
\begin{aligned}
& \Delta U=-\omega_{g} \\
& \Delta U=G m_{1} m_{2} \quad\left(\frac{1}{\gamma_{1}}-\frac{1}{\gamma_{2}}\right)>
\end{aligned}
$$

*

$$
\begin{array}{ll}
\infty-\cdots-\cdots \\
m_{2} \\
\lambda_{1}-r-\frac{4}{\text { sloaty } m_{3}}
\end{array}
$$

$$
\begin{aligned}
& U_{f}-\forall_{i}=\frac{-G m_{1} m_{2}}{\gamma} \\
& U=-\frac{G m_{1} m_{2}}{\gamma} \\
& \Delta K=0
\end{aligned}
$$

$$
\Delta v=-\omega_{g}=\omega_{\text {ent }}
$$

$$
\begin{aligned}
& u=\frac{-\int_{G m^{2}}^{3}}{a} c_{2} \\
& \left(\text { so.afpair }=\frac{n(n-1)}{2}=n_{c_{2}}\right)
\end{aligned}
$$

In the abone oustion.

1) Find the weskione byentenal agent in pepeating the tarssissinreans for infinote distano

40

$$
\begin{aligned}
\Delta U=U_{f}-U_{i} & =w_{\text {ent }} \\
W_{\text {ent }} & =0-\left(\frac{-3 G m^{2}}{a}\right) \\
& =\frac{3 G m^{2}}{a}
\end{aligned}
$$

WWW.GRADESETTER.COM
Clytchoice in Gravitatonal P.E $(A U)$:

$$
\begin{aligned}
& U_{B}=\frac{-G M m}{(R+h)} \\
& \Delta U=U_{B}-U_{A} \\
& \Delta U=G M_{m}\left(\frac{1}{R}-\frac{1}{R+h}\right) \\
& \Delta=\frac{G M m}{R(R+h)} \quad\left\{\frac{m g h}{R}\right) \quad G=\frac{G M m}{R 2} \\
& \Delta U=\frac{1+h}{R} \quad \Delta U=m g h
\end{aligned}
$$

A body afonans (m) in projected vatically upward from the sierfoee of cent at speed $v=\frac{1}{2} \sqrt{\frac{g \mathrm{Gm}}{R}}$

1) Find the max, height reached by the body from the surface of earth

$$
\begin{aligned}
& \frac{1}{2} m v^{2}=\Delta u \\
& \frac{1}{2} m \cdot \frac{1}{4} \frac{-2 G m}{G}=\frac{1}{2} m \cdot \frac{1}{4} \cdot \frac{q g R}{R}=\frac{R g h}{\left(1+\frac{h}{R}\right)} \quad \begin{array}{l}
g=\frac{G m}{R 2} \\
R m=g R^{2} \\
R+h=4 h
\end{array} \\
& h=\frac{R}{3}
\end{aligned}
$$

WWW.GRADESETTER.COM
(lat chote

Gravitational potentical at any ficld poline in defined at workione by extennal agent in carg-carsing unit mass (sloa). without change in pinetic energy \& foam.
Infinity (∞) to that point (P)

$$
\begin{aligned}
& \omega_{\text {ent }}=u_{f}-u_{i} \\
& (p) \\
& \hat{p}
\end{aligned}
$$

Gravitational potential at any field point due to point mars (m, r)

$$
V_{p}=\frac{-G m}{\gamma}
$$

$m=$ constant

[प4)

(find Gravitational Potential at point " P ".)

$$
\begin{aligned}
& v_{p}=\left(\frac{-G m}{a}\right)+\left(\frac{-G m}{(\sqrt{2}) q}\right) \\
& \Rightarrow \frac{-G m}{a}\left(1+\frac{1}{\sqrt{q}}\right)
\end{aligned}
$$

W) Gravitational potenfial at any
point due to (nxifferm) sing (min)

$$
v_{p}=\int d v=-\int \frac{G(d m)}{r}
$$

$$
V_{p}=-\frac{G}{\gamma} \int d m=\frac{-G m}{\gamma}
$$

$$
v_{p}=\frac{-G m}{\left(R^{2}+x^{2}\right)^{1 / 2}} \quad\left(\begin{array}{l}
(x=0(\text { at conde) }) \\
\left(v_{\text {conde }}=\frac{-G r x}{R}\right)
\end{array}\right.
$$

WWW.GRADESETTER.COM

1) Find the gravitational potential at point Cl_{2}.

WWW.GRADESETTER.COM

I Relation between Gravintelional ficld Intensity (\vec{E}) and Gramitanis Poteotrial: \rightarrow

$$
\begin{aligned}
& \vec{F}=m \vec{E} \\
& \omega_{g}=\int_{\partial_{A}}^{\overrightarrow{r_{B}} \vec{F} \cdot d \vec{r}} \\
& \omega_{g}=m \int_{\vec{\gamma}_{A}}^{\overrightarrow{r_{B}}} \vec{E} \cdot d \vec{r} \\
& W_{\text {ent }}=-m \int_{\gamma_{A}}^{\vec{n}} \vec{E} \cdot d \vec{r} \\
& \frac{w_{\text {ent }}}{m}=V_{B} V_{A}=-\int_{\vec{r}}^{\overrightarrow{r_{B}}} \overrightarrow{E^{\prime}} d \vec{r} \\
& \text { Wont }=V_{\sigma_{0}} V_{A}=-\infty= \\
& w_{\text {ent }}=m\left(V_{B}-V_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{E}=E_{x} \hat{i}+E_{y} \hat{j}+E_{z} \hat{k} \\
& \overrightarrow{d r}=d x \hat{i}+d y \hat{j}+d z \hat{k} \\
& \left.V_{B}-V_{A}=-\int_{\left(x_{1}, y_{1}, z_{2}\right)}^{\left(x_{2} y_{2}, z_{2}\right)} \vec{E} \cdot \vec{r}\right) \\
& V_{B}-V_{A}=-\left[\int_{x_{1}}^{x_{2}} E_{x} d x+\int_{y_{1}}^{y_{2}} E_{y} d y+\int_{z_{1}}^{z_{2}} E_{z} d z\right.
\end{aligned}
$$

E(iotantial dibfaino),

$$
\begin{aligned}
& \vec{E}=E_{x} \hat{i}+E_{y} \hat{\jmath}+E_{z z} \hat{k} \\
& E_{x}=-\frac{\partial v}{\partial x} \\
& E_{y}=-\frac{\partial g v}{\partial y} \quad v=f(x, y, z) \\
& E_{x}=-\frac{\partial v}{\partial z}
\end{aligned}
$$

 mans instribution in "is" whene "Iy "Sacel", along "tre" x-axis" where $\alpha=$ coms.,

1) Fins the Grantational potential at posixion"x"cts if if the Granitalion
2) Find the wogkdone by gravitational force diving the displacement " 0 "to " P " for the given path

$$
\begin{gathered}
\vec{F}=\text { हहे } \\
\vec{F}=(201+20 J) \mathrm{N} \\
O \rightarrow A \\
\omega_{1}=20 \times S=100 J \\
A \rightarrow P \\
\omega_{2}=20 \times 4=80 J
\end{gathered}
$$

So, Total waskdone $=180 y$

WWW.GRADESETTER.COM
(st Choice
(23.) Crravitational potontial duetso thin Iniform Sphorical
Shellatany point ensicie the ghed $(r \leqslant R)$

$$
V_{\text {in }}=V_{\text {conse }}=V_{\text {surfore }}=-\frac{G M}{R}
$$

* For external Points:-

$$
(r \geqslant R)
$$

$$
V_{\text {out }}=\frac{-G m}{r}
$$

WWW.GRADESETTER.COM

$$
d m=\frac{m}{(3)}(S, \text { Axtajicinass }
$$

$$
\begin{array}{|l|}
\hline \text { Page No. } \\
\hline \text { Dato } \\
\hline
\end{array}
$$

for Spherical shell: \rightarrow

Gravitational potential due to uniform "Solid Sphere" at Any Inside point ($r \leqslant R$)

$$
V_{\text {in }}=V_{1}+V_{2}
$$

$$
d m=\frac{3 m}{R^{3}} x^{2} d x
$$

$$
\begin{aligned}
& \text { (lstctaice } \\
& v_{1}=\frac{-G m_{1}}{r} \\
&=\frac{-G m r^{3}}{R^{3} r}=\frac{-G m r^{2}}{R J} \\
& v_{2}=-\int_{x=r}^{n=R} \frac{G(d m)}{x} \\
&=\frac{-3 m G}{R^{3}} \int_{\gamma}^{R} x d x \\
& \Rightarrow \frac{-3 G m}{2 R^{3}}\left(R-r^{2}\right) \\
&\left.V_{\text {in }}=\frac{-G m}{2 R}\left(3-\frac{r^{2}}{R 2}\right)\right]
\end{aligned}
$$

(8) At the cente $(r=0)$

$$
V_{\text {cente }}=-\frac{3 G M}{2 R}
$$

(4) At the sirfoo $(r=R)$

$$
V_{3}=\frac{-G m}{R}
$$

www.GRAGUESEOTER.COM

WWW.GRADESETTER.COM

Fins the max height atto fy the tody:

$$
\begin{aligned}
\frac{1}{2} \quad & =\frac{6}{(K R E)}+\left(-\frac{G M m}{R+h}\right) \\
& \frac{1}{2} \sqrt{\frac{2 G m}{R}} \\
& -\left(R-\frac{R}{1 m}\right)^{2} 7=0
\end{aligned}
$$

$$
\frac{1}{2} m v^{2}+m\left[\frac{-G m}{2 R}\left(3-\frac{\left(R-\frac{R}{100}\right)^{2}}{R}\right)\right]=0+\left(\frac{-G m m}{R+2}\right)
$$

$$
h=V
$$

Find the naingetorits mohimuon relocits af
prosection form the sirfore of torge plonet to that it ican reoch to the surfore of longen planch.

$$
E_{1}=E_{2}
$$

$$
\frac{\operatorname{sinl}^{\prime}}{r_{1}^{2}}=\frac{\sigma_{1}(16 \mathrm{M})}{r_{2}^{2}}
$$

$$
\begin{aligned}
\frac{\partial_{1}}{\gamma_{2}} & =\frac{1}{4} \\
\gamma_{1} & =29 \\
r_{2} & =89
\end{aligned}
$$

Norse,

$$
\begin{aligned}
& Q \rightarrow P \\
& \frac{1}{2} m v_{\text {mon }}^{2}+m v_{Q}=0+m v_{p} \\
& \frac{r_{m m}^{2}}{2}+\left[\frac{-G(16 m)}{2 a}+\left(\frac{-G m}{8 a}\right)\right]=0+\left[\left(\frac{-G(16 m)}{89}+\frac{-G m}{2 a}\right)\right] \\
& \Rightarrow \frac{N_{n+\pi}^{2}}{2}+\left[\left(\frac{-4 G(16 m)+-(6 m)-G m}{8 a}\right)\right]=0+\left[\frac{-G(16 m)+-4 G m}{8 a}\right] \\
& \Rightarrow V_{m o n}^{a}+\left[\frac{-64 G m-G m}{8 a}\right]=\left[\left(\frac{-16 G m-4 G m}{8 a}\right)\right] \\
& \Rightarrow V_{\text {mun }}{ }^{2}\left[\frac{-6 S(\pi m)}{\delta a}\right]=\left[\frac{-206 m}{8 a}\right]
\end{aligned}
$$

WWW.GRADESETTER.COM

* Kepler's law :- ©
(1) It law: $\Rightarrow \rightarrow$ Ale planets revolve around the sun in an elliptical orbit in utu sum is sum in located at one of the tho focii.

$$
\begin{aligned}
& r_{1}=a(1-e) \\
& r_{2}=a(1+e)
\end{aligned}
$$

WWW.GRADESETTER.COM

Ind law: \Rightarrow (law of Area) : \rightarrow
The line joining the sun and the planet
interval.
(Areal spec of the planet remain Constant i)

$$
\frac{d A}{d t}=\frac{1}{2 m}>(\text { constant } t)
$$

where:-
$L \Rightarrow$ Angular Momentum
Propel: \rightarrow af planet about
sum.

WWW.GRADESETTER.COM

WWW.GRADESETTER.COM
(sse choice

$$
\begin{aligned}
& d A=\frac{1}{2} r v \sin \theta d t \\
& \frac{d A}{d t}=\frac{1}{2} \frac{(v r \sin \theta)(m)}{m} \\
& \frac{d A}{d t}=\frac{L}{2 m}
\end{aligned}
$$

(III) (11)staev \rightarrow

Square af time period of revolution af aplanet rerolving atound whe 84 m in power of semimavion areis. the culier

$$
T^{2} \alpha a^{3}
$$

$$
\begin{align*}
& \left(L_{p}\right)_{s}=\left(L_{A}\right)_{s} \\
& \text { min }_{1} r_{1}=\text { mir }_{2} r_{e} \\
& v_{1} d(1-e)=v_{2} \phi(1+e) \\
& v_{1}(1-e)=v_{2}(1+e)
\end{align*}
$$

Nov

$$
\begin{aligned}
& G p=E A \\
& \frac{1}{2} m v_{1}^{2}+\left(\frac{-G m_{m}}{r_{1}}\right)=\frac{1}{2} \operatorname{hiv}_{2}^{2}+\left(\frac{-G M_{m}}{r_{2}}\right) \cdot(-2)
\end{aligned}
$$

$$
\frac{G M p 1}{r^{2}}=\frac{\not x v_{0}^{2}}{r}
$$

$$
v_{0}=\sqrt{\frac{G M}{r}}
$$

(3) 1 orbital Speed in Indepentent

If mass af abiting bodg (Aी Dody बूम रह है abital pped उस्त पर depend नरी करता है।

$$
T=\frac{2 \pi r}{r_{0}}=\frac{2 \pi+\sqrt{2}}{\sqrt{G m}}
$$

WWW.GRADESETTER.COM
(sst Choice
Toital m. abtoed "bouns system"

$$
\begin{aligned}
& T^{2}=\frac{\sqrt{\pi^{2}}}{G m} r^{3} \\
& T^{2} \alpha r^{3} \text { ATE Actat on Nivale }
\end{aligned}
$$

Shertecct ${ }_{2} \rightarrow$ If force excatid by two bors in dibferant
*t Then in thin ition are fimd retapion ale

quic(Inmagnationtype)

$$
\begin{aligned}
& F \alpha \frac{1}{\gamma^{2}} \\
& F \alpha \gamma^{-2} \\
& 80 \gamma^{2} \alpha \gamma^{(1+2)} \\
& T^{2} \alpha \gamma^{3}
\end{aligned}
$$

$+$

$$
\begin{aligned}
& K \cdot E(K) \\
& K=\frac{1}{2} m v_{0} \\
& k=\frac{G M m}{2 r}
\end{aligned}
$$

WWW.GRADESETTER.COM

It T Total mechenical Frengy (E)

Nok: \rightarrow

$$
\begin{aligned}
& U=2 E \\
& U=-E
\end{aligned}
$$

$\xrightarrow{4 \text { Binding Onergy }(B \cdot E)=-(\text { Total energy })}$
$\xrightarrow{\text { Goffh: } \rightarrow}$ c||ch

* Escape Speed (Te)
\square

\qquad

$$
\text { Note: }>
$$

per earth Sichace

$$
g=\frac{G M}{R^{2}}
$$

$$
V_{e}=11.2 \mathrm{~cm} / \mathrm{s}
$$

(*) Escape speed is Independent of mans af projected object and Angle af projection.

Nole: \Rightarrow
y

$$
\frac{1}{2} m
$$

$$
\frac{v^{2}}{2^{2}}-\frac{1}{2} v_{e}^{2}=\frac{1}{2} v_{1}^{2}
$$

$$
v_{1}=\sqrt{\left(V^{2}-V_{e}^{2}\right)}
$$

$$
\begin{aligned}
& V_{e}=\sqrt{\frac{2 G m}{R}} \\
& v_{e}^{2}=\frac{2 G M}{R}
\end{aligned}
$$

Issthoice a unching af Satellite
$\xrightarrow{\text { setcetriter }}$

ATS

$$
\begin{align*}
& (\Delta \mathrm{L}=(L) Q \\
\Rightarrow & V_{\min } r= \\
V_{\min } r & =V_{1} R
\end{align*}
$$

None

$$
\begin{align*}
& E_{p}=E Q \\
& \frac{1}{2} \phi v_{\text {min }}^{2}+\left(\frac{-G m_{m}^{\prime \prime}}{r}\right)=\frac{1}{2} m\left(v_{1}^{a}+\left(\frac{-G M m_{n}}{R}\right)\right. \tag{2}\\
& \Rightarrow \frac{1}{2} V_{\min }^{a}+\left(-\frac{G M}{r}\right)=\frac{1}{2} \frac{v_{\min r}}{R}+\left(\frac{-G m}{R}\right) \\
& \Rightarrow \frac{1}{2} V_{\text {min }}^{2}-\frac{1}{2} \frac{V_{\min } r}{R}=\frac{-G m}{R}+\frac{G M}{r} \\
& \Rightarrow \frac{V^{2} \min R-2 \sqrt{\min r}}{2 R}=\frac{-\operatorname{Gn} m \gamma+\cos m R}{R \gamma}
\end{align*}
$$

$$
v_{\text {min }}=\sqrt{\frac{2 G_{1} M_{1} R_{1}}{r_{2}\left(r_{2}+R_{1}\right)}}
$$

Now.
If $h=R: \rightarrow$

$$
\begin{aligned}
& V_{\text {min }}=\sqrt{\frac{R G m R}{\frac{R R}{} \cdot 3 R}} \\
& \quad V_{m m} \Rightarrow \sqrt{\frac{G m}{G R}} / \text { or } V_{\text {min }}=\sqrt{\frac{G m}{3 R}}
\end{aligned}
$$

Eg 4

Find the value af o "2"' for which body collide with the erich vienpere
An g

$$
\begin{align*}
\operatorname{mov}(2 \alpha) & =\sin \sin \theta \times k \\
2 r & =r_{1} \sin \theta \\
\sin \theta & \left.=\frac{2 r}{r_{1}}=\text { (}\right) \tag{1}
\end{align*}
$$

No.

$$
\begin{aligned}
& \frac{1}{2} M \frac{G M}{7 R}+\left(\frac{-G M M}{2 R}\right)=\frac{1}{2} x v_{1}^{2}+\left(\frac{-G M M}{R}\right) \\
& \Rightarrow \frac{G m}{I A R}-\frac{G m}{2 R}+\frac{G m}{R}=\frac{1}{2} V_{1}{ }^{2} \\
& \Rightarrow \quad \frac{G m-7 G M+14 G m}{14 R}=\frac{1}{2} V_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sqrt{\frac{2 G m}{7 R}} \\
& v_{1}=2 \sqrt{2} \cdot v \\
& \sin \theta=\frac{2 V}{v_{1}}=\frac{1}{\sqrt{2}} \\
& \theta=45^{\circ}
\end{aligned}
$$

WWW.GRADESETTER.COM

Nare

$$
\left(m_{1}>m_{2}\right)
$$

$$
\omega=\text { Same }
$$

$$
x_{1}+x_{2} \geq 2
$$

$$
\begin{aligned}
& r_{1}=r-\frac{m_{2}}{\left(m_{1}+m_{2}\right)} \\
& r_{2}=r_{0} \frac{m_{1}}{\left(m_{1}+m_{2}\right)} \\
& m_{1} r_{1} \omega^{2}=\frac{G m_{1} m_{2}}{r^{2}}=m_{2} r_{2} \omega^{2} \\
& \frac{G m_{1} m_{2}}{r^{2}}=\frac{m_{1} r m_{2} \cdot \omega^{2}}{\left(m_{1}+m_{2}\right)} \\
& \omega=\sqrt{\frac{G\left(m_{1}+m_{2}\right)}{\gamma^{3}}} \\
& T=\frac{2 \pi}{\omega} \\
& T=2 \pi \sqrt{\frac{\gamma^{3}}{G\left(m_{1}+m_{2}\right)}}
\end{aligned}
$$

*) Angular momentien afe "m"

$$
\begin{aligned}
c \cdot 0 \cdot m & \therefore \Rightarrow \\
4 & =I_{1} \omega
\end{aligned}
$$

*) Angular momentem afo "m" about u. m_{2} ".

$$
L_{2}=I_{2} \omega
$$

Nore

$$
\begin{aligned}
& \frac{L_{1}}{L_{2}}=\frac{I_{1}}{I_{2}}=\frac{m_{1} r_{1}{ }^{2}}{m_{2} \cdot r_{2}{ }^{2}}=\frac{m_{2}}{m_{1}} \\
& \frac{L_{1}}{L_{2}}=\frac{I_{1}}{I_{2}}=\frac{m_{2}}{m_{1}}
\end{aligned}
$$

80

$$
\begin{aligned}
K & =\frac{1}{2} \pi \omega^{2} \\
\frac{k_{1}}{k_{2}}=\frac{D_{1}}{I_{2}} & =\frac{m_{2}}{m_{1}}=\frac{L_{1}}{L_{2}}
\end{aligned}
$$

(lsat choice Gravitation
(lnivaral Ciraritation

1) Newton lar af universal Gravitation : \rightarrow

$$
F_{m_{1} m_{2}}=\frac{G m_{1} m_{2}}{r^{2}}
$$

1) Applicable to point masses or spherical
ii)
bodies 1 on r \quad.

y Aec^{n} due to Gravity:-

$$
\begin{aligned}
& F_{m m}=\frac{G m_{m}}{r^{2}} \\
& F_{m m} \geqslant m a_{c m} \\
& a_{m} 2 \frac{G m}{r}
\end{aligned}
$$

WWW.GRADESETTER GROMice

$$
a_{m}=\frac{G M}{\gamma^{2}}
$$

\# Tosque of eerth wirit. Centre of sien: \rightarrow

$$
\begin{aligned}
\vec{z} & =\vec{\gamma} \times \vec{F} \\
& =r F \sin 180^{\circ} \\
& =0 \\
\vec{z} & =0 \quad \text { (Always zero) }
\end{aligned}
$$

8o Angula moment in consenved.

Angula momentom of each wirt centraf formsos Sum in constant

$$
\begin{aligned}
\vec{L} & =\vec{r} \times m \vec{v} \\
|\vec{L}| & =r \times r v \sin \left(90^{\circ}\right) \\
\vec{L} \mid & =m v r \\
L & =m v \gamma
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{L}{m r} \text { (Uniffrr } \\
& \text { maxise } \\
& \text { Noter } \rightarrow \\
& F=F_{C \cdot S} \\
& \frac{G M \varnothing}{r q}=\frac{מ מ r^{2}}{\gamma} \\
& V=\sqrt{\frac{G M}{r}} \Rightarrow \text { mansafisen. } \\
& V_{\text {critital }}=\sqrt{\frac{G M}{\gamma}} \\
& \text { Veath } \approx 30 \mathrm{~lm} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
V & =\sqrt{\frac{G M}{(R+h)}} \\
h & \rightarrow 0 \\
V & =\sqrt{\frac{G m}{R}} \\
& =8 \mathrm{~km} / \mathrm{sec}
\end{aligned}
$$

Time Paiodi:

$$
\frac{G M_{m}}{r^{2}}=\frac{m v^{2}}{r^{2}}
$$

but the not concell

$$
\begin{aligned}
& \frac{1}{\gamma} \times \frac{G M m_{m}}{\gamma^{2}}=\frac{m v^{2}}{\partial \times \gamma} \\
& \frac{(n M m}{r^{3}}=\frac{m r^{2}}{r^{2}} \\
& \omega^{2}=\frac{G m}{\partial 3}=\left[\frac{2 \pi}{T}\right]^{2} \\
& T^{n}=\frac{4 \pi^{2}}{G m^{2}} r^{3} \text { mansatocost }
\end{aligned}
$$

WWW.GRADES EHTEERC.9n
Q)

$$
\text { Given } \rightarrow \text { mich }
$$

Find Tyupi $=$?

Neut on lane of

$$
\begin{aligned}
& F_{2} \frac{G m_{1} m_{2}}{r 2} \text { G=6.67} \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\
& m_{1}, m_{2} \rightarrow \text { froint mass. }
\end{aligned}
$$

Gravitation fore in always abtactine in nature at out along the line joining two point masses. It is Indeserdont of medium in which mass are present

it is a long i
*) It two planet's range fence ont out evenb/w
6
v

$$
\begin{aligned}
& F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} क_{2}}{r^{2}} \text { in dectrostale } \\
& F=G \times \frac{m_{1} m_{2}}{r^{2}} \text { in Gravitate }
\end{aligned}
$$

ur have already have snow sclecto stator.
and are know onerything about decprostatis
ant our gravitation fere is almost simile,
in elcedurtate. fine in terms of formula Therefore in their chowtenwe will not derive any formula be will
simply reploce by
i) $\frac{1}{4 \pi E_{0}}$ by G
ii) chorge by mors
iii) change density by mass densing

Q1.)

$$
\begin{aligned}
& \text { Frot }=\frac{\sqrt{2} G m \times 2 m}{r^{2}} \text { am }
\end{aligned}
$$

819

Or
luth m_{10}° im conte of mass with cont about their corms. under the mutaal gravitaton foed only Ded itsitio of $K \cdot B$ af mosm to 2 en i1) fing pit peved of loth

WWW.GRADESETTER.COM
(stchoice

$$
\begin{array}{ll}
m r_{1}=m r_{2} \\
\frac{r_{1}}{r_{2}}-\frac{2}{\Delta} & \\
r_{1}+r_{2}+r & r_{2}=\frac{r}{3}
\end{array}
$$

$$
\text { Fret }=0
$$

$$
\text { aem } 20
$$

$$
\mathrm{Cm} \rightarrow \text { चुपचाप रहिगा }
$$

$$
\begin{aligned}
K \cdot E_{m} & =\frac{1}{2} m\left(\operatorname{cor} r_{1}\right)^{2} \\
K \cdot E_{2 m} \Rightarrow & \frac{1}{2} \times 2 m\left(\operatorname{cor}_{2}\right)^{2} \\
\frac{K E_{m}}{K \cdot E_{2 m}} & =\frac{r_{2}^{2}}{4}
\end{aligned}
$$

11)

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega} \\
& F=2 m \omega^{2} r \\
& \frac{G \times m \times 2 m}{r^{2}}=2 m \omega^{2} r_{2} \\
& \frac{G \times 2 m^{2}}{r^{2}}=2 m \omega^{2} \frac{n}{3} \\
& y \frac{G \times 2 m^{2}}{r^{2}}=2 m \omega^{2} r
\end{aligned}
$$

WWW.GRADESETTER.COM
(lse choice)

squa::
Eoch of the are revoluing on 4 at wath about So.n unter the mutual in fore "only" set. time Aes revolution. Period of
800^{9}

$$
\begin{aligned}
& F=\frac{G m^{2}}{2 r^{2}}, \\
& F_{1}=\frac{G m^{2}}{4 r^{2}} \\
& \sqrt{2} F+F_{1}=m \omega^{2} y \\
& \omega=E \\
& T=\frac{2 \pi}{\omega 0}
\end{aligned}
$$

(lst Choice
Triavitational ficly -

It in a regoos in which obicet or matter enperience gravitation fare

Way body hos grontal freld survound it सल्तनट surrounding it.

(8) Gravitcetron field intensity (Eg)

1) Grantcetan freld Intensts at ony point es defined as gravitcoton fere on unit mass if ploeed at that point.
2) Init af Eq is $\mathrm{ss} / \mathrm{Ky}$

単

(llsconoter)
TF M mas in" placed at $P=m \mathrm{~g}$
1 Direction of fone in aleoays along E

$$
\stackrel{m}{\text { sultan }} \stackrel{-\cdots}{g}
$$

Drection of Eg due to ang sowarts shats otfict is always fowants fublen.

Eg due to point (Sultan) mass $L s$
theleenoftak.

$$
\lim _{\rightarrow \rightarrow \infty}
$$

$$
\left.\sqrt{\sqrt{g}=-\frac{\operatorname{Gr} \text { m } \vec{\gamma}}{\partial \sqrt{2}}} \right\rvert\,
$$

WWW.GRADESETTER.COM
(last Choice
Adele (In gravitation)

$$
\begin{gathered}
\therefore \cdots \cdots \cdots \\
\stackrel{m}{m}-9 m
\end{gathered}
$$

(ब) Del the point where ty will hazer

$$
\begin{aligned}
& \xrightarrow{\stackrel{n}{n} \rightarrow a-x \rightarrow} \\
& \frac{4-m}{x^{2}}=\frac{4 \times 2 m}{(a-x)^{2}} \\
& x+\frac{a x 2 m}{(a \rightarrow x)^{2}} \times 0 x \\
& x=\square
\end{aligned}
$$

1. E due fo ring \rightarrow

$$
E=\frac{K Q x}{\left(x^{2}+R^{2}\right)^{3 / 2}}, \quad \operatorname{Gy}=\frac{G M_{x}}{\left(x^{2}+R^{2}\right)^{3 / 2}}
$$

At the cente Ey $=0$ cot $x=\frac{R}{\sqrt{2}}$ Eg is $m_{a_{3}}$
2.88 Eg due to anc

marsaf ArC $=n$

Eg at $e=$?

$$
\begin{aligned}
& \int E=\frac{\lambda \sin \alpha / 2}{2 \pi \varepsilon_{0} R}, \lambda=\frac{m}{R \alpha} \\
& E Q=\frac{\lambda \sin \alpha / 2 \times 2}{2 \pi \varepsilon_{0} R \times 2} \\
& \operatorname{tog}=\frac{2 G_{1} \sin \alpha / 2 \times m}{R^{2}}
\end{aligned}
$$

WWW.GRADESETTER.COM

G due to wire

$$
\begin{array}{|c}
\infty \\
\text { masparunit } \\
\text { lorgth }
\end{array} \quad \underset{\infty}{\infty} \quad \frac{\frac{\operatorname{Gr2\lambda }}{\gamma}}{2 \pi \varepsilon_{0} \times 2}
$$

chlow.
Eg due toisphano.

movaf I p here M

$$
\begin{aligned}
& r \rightarrow R, \operatorname{Eg}=\frac{G m}{r^{2}}, \frac{-G m \vec{r}}{r^{3}} \\
& r=R, \operatorname{Gg}=\frac{G m}{R^{2}}
\end{aligned}
$$

$$
r \in R, E g>0
$$

5) Eig due to Solid sphee

WWW.GRADESETHERleonne

i)

$$
\frac{7 G y m}{(S R)^{2}}
$$

u)

$$
\frac{3 G M}{(3 R)^{2}}
$$

Det Ey at any point inside caridy-s

mas donsy + ?
$80 / 4$

$$
\frac{\sigma_{g}}{} \frac{2 \sqrt{r+4}}{3 \varepsilon_{0} \lambda 4 \pi}
$$

$$
\frac{\sqrt{g} 2-4 x G \rho \sqrt{F}}{3}
$$

$$
\begin{aligned}
& \text { (1) +(2) } \rightarrow \text { Complete गीला } \\
& \overrightarrow{E_{1}}, \frac{4}{3} A \cos ^{2} x=\longrightarrow-4 \pi G \operatorname{rar} \\
& E_{1}=\frac{4}{3} \pi \operatorname{sig} \vec{d} \\
& =\frac{4}{3} \pi \operatorname{ra}(\vec{x}-\vec{\gamma})
\end{aligned}
$$

WWW.GRADESETTER.COM
Simple Harmonic motion

Note: \rightarrow

$$
\underset{\substack{\text { linear Restring } \\ \text { force }}}{F=-k x}
$$

Noteris There muat mbe Restering ferce or Restering terque enthe iscrillatery syttent ', (ob lineametion) Noteir oscillatery monest be Periodie. but Peviode may or may not he oscillaten

Note: \rightarrow which in Rendering fore or nat

1) $F=-2(x-2)^{23} \rightarrow(X)$ Note Res.
ii) $F=-2(x-2)^{3}$
iii) $F=-4 x$
(L)
iv) $F=-3 x^{2}$
(x) Not
v) $f=-4(x-3)+(x)$
v) $F=-4 x-8$
($)$

Ans s

1) $x=-2, f=0$

WWW.GRADESETTER.COM
(s, Ghoice
i) $F=-2(x-2)^{3}$

$$
x=2, \quad F=0
$$

ffore उनक्तर्का जशीं हैं इमलिए पर ग्या परिसटा। bock उपजे Position पाएगा।
कित्जोट:- समि़ यदि ' x ' पर powe क्य होगो ती ferce in not Restering
इसलिए
Fer Restring, ferce Pavenar exponentaf x is odd.
(Tivy

$$
\begin{aligned}
& F=-3 x^{2} \\
& F=0 \text { in } x=0 \\
& \\
& \quad \begin{array}{ll}
& x<0 \\
& F<0 \\
& \quad x>0 \\
& F=0
\end{array}
\end{aligned}
$$

* Condition af S.H.M \longrightarrow

1) There must le a meen position/stable eius, it: Dosition/centeaf ircillation.

2.) The moat be linear restoring foral Wixer Restering olorne ocking on the oscillating porticle or body.

$$
\begin{aligned}
& F=-k x \\
& z=-k \cdot \theta
\end{aligned}
$$

where
$x-$ is the displocend
af oscillating parfich from mean Pasition.

$$
\begin{array}{r}
K \rightarrow \text { "tre" Constant } \\
\\
\\
\\
\text { ferce constant }
\end{array}
$$

- Restroing force is always opporite af director dieplecemant.
Restering fore in always aniented to disected towards the mean position.

$$
\begin{aligned}
& \vec{V} \times \vec{x}=\overrightarrow{0} \\
& \vec{F} \times \vec{v}=\overrightarrow{0}
\end{aligned}
$$

$$
\text { a(c) } \frac{k}{6}
$$

$$
F=-k x
$$

$$
a \leq\left(\frac{k}{m}\right) \cdot x
$$

$$
a=-\left(\frac{k}{m}\right) x
$$

$$
\frac{d^{2} x}{d t^{2}}+\left(\frac{k}{m}\right) \cdot x=0
$$

Differential equation af S.H.M.
ImP

$$
a=-w^{2} \cdot x
$$

where

$$
\omega=\sqrt{\frac{k}{m}}
$$ af OSullation.

Www.GRADESETT駶RARM
jo. Relation between Uniform Crab

WWW.GRADESETTER.COM
(shthoice

$$
\begin{array}{l|l}
y=R \sin \omega \cdot \theta & x=R \cos \omega t \\
v_{y}=\frac{d y}{d r}=(\omega R) \cos \omega t & a_{x}=-\omega^{2} \cdot x \\
a_{y}=-\omega^{2} \cdot y & \\
\hline
\end{array}
$$

$$
\begin{aligned}
& a_{x}=-\omega^{2} \cdot x \\
& v \cdot \frac{d r}{d x}=-\omega^{2} \cdot x \\
& \int_{r}^{0} r \cdot d r=-\omega^{2} \cdot \int_{x}^{A} x \cdot d x \\
& V= \pm \omega \sqrt{A^{2}-x^{2}}
\end{aligned}
$$

$$
\dot{r}=\omega \sqrt{A^{2}-x^{2}}
$$

Nore's
where $\omega \Rightarrow$ Angulan

$$
\begin{aligned}
& \frac{d x}{d t}=\omega \sqrt{\left(A^{2}-x^{2}\right)} \\
& \int \frac{d x}{\sqrt{\left(A^{2}-x^{2}\right)}}=\omega \int d t
\end{aligned}
$$

WWW.GRADESETTER.COM
(1) in max. displocemens from the miden thath
\square

Imp

Equation af
Pidenf

$$
\sin ^{-1} \frac{x}{A}=\omega \cos +\phi_{0}
$$

$$
\frac{x}{A}=\sin \left(\cot +\phi_{0}\right)
$$

$$
x=A \sin \left(a t+\phi_{0}\right)
$$

$x \Rightarrow$ displacement from mean at paine"।
$A \Rightarrow$ Amplitade af 0.8cillation It is mare. odisp bo a/ oscillating Panict from the mean Posiorn or either sidealo mean
Position. Itgine the status (Position and director af velocity) af Oscillaiting padto at $(t=0)$.

WWW.GRADESETTER.COM
(s) choice

$$
\begin{aligned}
&\left(\omega t+\phi_{0}\right) \Rightarrow \text { At ang time "tt" } \\
& \text { it gives the States }
\end{aligned}
$$ af particb. (Phase:)

find $\phi_{0}=$?
at $t=0$

$$
0=A \sin \left(\omega \times 0+\phi_{0}\right)
$$

$\sin \phi_{0}=0$

$$
\phi_{0}=0, \pi, 2 \pi \ldots \ldots
$$

NOE:-

$$
\frac{\partial v}{\partial u}=a=- \text { At }
$$

$$
x=A \sin \left(\cos t+\phi_{0}\right)
$$

$$
\begin{aligned}
& V=\frac{d x}{d t}=A \omega \cos \left(\omega t+\phi_{0}\right) \\
& V=A \omega \cos (\omega \times 0+\pi) \\
& r=-i v e)
\end{aligned}
$$

80,

$$
\theta_{0}=0
$$

$x \geqslant A \sin \omega t$

Te A partib. oscillate sibuple hormonically along x-aris. whose eqn is $s H / m$ in \bar{c} givendy

$$
x=A \sin \left(\omega_{t}+\phi_{0}\right)
$$

at $t \geq 0$,
theportile passen th sought $x=+A$
and moving towonds "ne" x-anis. Find the value of ϕ_{0}.

Ans at $2=0$

$$
\begin{aligned}
\frac{A}{2} & =A \sin \phi_{0} \\
\sin \phi_{0} & =\frac{1}{2} \\
\phi_{0} & =\frac{\pi}{6}, \frac{s \pi}{6} \\
V & =A \omega \cos \left(\frac{\omega 1 s t}{+2 c}+\phi_{0}\right) \\
& =A \omega \cos \left(\frac{s \pi}{6}\right)<0
\end{aligned}
$$

(1) \rightarrow Time period af oscillation.

$$
\begin{aligned}
& \left(t_{0 B}\right)_{\operatorname{mon}}=t_{11} \\
& \left(t_{B C}\right)_{\text {mon }}=t_{n} \\
& \left(t_{0 c}\right)_{\text {mon }}=t_{3}
\end{aligned}
$$

or i) otp
Correct Relation-

$$
\begin{aligned}
& A_{1}<A_{2}<A_{3} \\
& A_{1}=? \\
& A_{2}=? \\
& A_{2}=?
\end{aligned}
$$

Q.) Nore. In the abive ouestion fint. A_{1} fre andctal.

$$
\begin{aligned}
& 2 \leq 2 \text { Asin cot } \\
& A / q=A \sin \cot , \\
& t_{1}=\frac{\pi}{6 \omega}=\frac{\frac{\pi}{6} T}{6 \times 2 \pi}=\frac{T}{12} \quad, \quad t_{2}=\frac{T}{6} \\
& A=A \sin \omega t \\
& \frac{t_{3}^{2}}{2} \frac{\pi}{2 a}=\frac{\pi}{2 \times 2 \pi}=\frac{T}{4}
\end{aligned}
$$

WWW.GRADESETTER. \qquad
No.

$$
\begin{aligned}
& t=0, \quad x=5 \mathrm{~cm} \\
& \square v>0
\end{aligned}
$$

86,

$$
\sigma_{0}=\frac{\pi}{6}
$$

Aparicle is oscillating simple farmavically ans it poses through meath position at $t=0$, towards the x-axis.

1) Find the Average speed af' the portrbe dung the time interne of 3 th oscillation. where $T \rightarrow$ time period of oscillator. and $A \rightarrow$ Amplitude of oscillation.

108 cillation $\rightarrow 4 \mathrm{~A}$
$\frac{3}{8}$ os cillaho $=\frac{A A \times \frac{3}{82}}{82}=\frac{3 A}{2}$

$$
\Delta t=\frac{T}{4}+\frac{T}{6}=\frac{S T}{12}
$$

$$
\begin{aligned}
& V_{\text {avg }}=\frac{3 A}{90} \times \frac{2^{6}}{5 T}=\frac{18 A}{5 T} \\
& \left|\overrightarrow{V a g}_{\text {arg }}\right|=\frac{A}{9} \times \frac{2^{6}}{5 T}=\frac{6 A}{5 T}
\end{aligned}
$$

WWW.GRADESETTER.COM

$$
\begin{aligned}
& \text { Note: } \Rightarrow \\
& x=A \sin \left(\cot +\phi_{0}\right) \\
& v=\frac{d x}{d t}=A \omega \cos \left(\cos \theta+h_{0}\right) \\
& a>\frac{d y}{d x}=-\omega^{2} \cdot x \\
& F=-k e \quad \omega=\sqrt{\frac{k}{m}} \\
& T=\frac{2 \pi}{\omega} \\
& \left(\xrightarrow[\text { ot } t \in 0,]{\phi_{0}=0}, x=0, v=+ \text { he }\right) \\
& \left(\frac{x}{1}\right)^{2}=\sin \left(\omega t+\phi_{0}\right)^{2} \\
& \left(\frac{V}{A V_{0}}\right)^{2}=\cos \left(\cot +\phi_{0}\right)^{2}
\end{aligned}
$$

dreplet ys

WWW.GRADESETTER.COM

WWW.GRADESETTER.COM

Atithe mean Rosition :-

$$
\begin{aligned}
& x=0 \\
& V_{\text {Pax }}=A \omega \\
& \quad(a=0)
\end{aligned}
$$

2i) at the entene position :-

$$
\begin{aligned}
& (x= \pm A) \\
& V=0 \\
& \left|a_{\max }\right|=\omega^{2} A
\end{aligned}
$$

WWW.GRADESETTER.COM

$$
K=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)
$$

$$
\frac{k_{\text {max }}}{}=\frac{1}{2} m \omega^{2} A^{2}(\text { at } x=0)
$$

* Potential Viergy (U)

$$
\begin{gathered}
F=-k x \\
U=\frac{1}{2} k x^{2} \\
U=\frac{1}{2} \ln \theta^{2} x^{2}
\end{gathered}
$$

At the mean Pasiton $(x=0)$

$$
\begin{aligned}
& \text { P.E }=0 \\
& \left.C_{\max }=\frac{1}{2} m \omega^{2} A^{2}\right] \\
& \rightarrow \text { at } x= \pm a \\
& K=s \underbrace{\because U U_{\text {min }}=0,(x \infty 0)}_{\frac{E}{E}=K_{\text {max }}=U_{\text {max }}=\frac{1}{2} m \omega_{2} A^{2}}
\end{aligned}
$$

WWW.GRADESETTER.COM
(1st choice

(P.E is min at mean position and max. at ertreme Pasition.) | Page No. |
| :--- |
| Date |

Date
\&

$$
\begin{align*}
& \phi_{0}=0 \\
& \Rightarrow K \cdot E(K) \\
& K=\frac{1}{2} m v \\
& K=\frac{1}{2} m \omega^{2} A^{2}\left(\cos ^{2} \omega t\right) \\
& K=\left(\frac{1}{4} m \omega^{2} A^{2}\right)(1+\cos 2 \omega t) \\
& \omega=\frac{2 \pi}{T}=2 \pi f \\
& f_{L}=\frac{1}{T} \\
& \text { linear } \\
& \Rightarrow \text { P.E } \\
& U=\frac{1}{2} m \omega^{2} A^{2}\left(\sin ^{2} \omega t\right) \\
& U=\frac{1}{4} m \omega^{2} A^{2}(1-\cos 2 \omega t) \tag{2}\\
& E=K+U=\frac{1}{2} m \omega^{2} A^{2}=\text { constand } \text {. }
\end{align*}
$$

crarRhus

里 8
$x=A \operatorname{Sin} \cot$

$r=A \omega \cos \cos$

 $t \rightarrow$

Co-1 i) Fins the
A time peord $(T) \cdot \begin{aligned} & (K-E) \text { arg and }(P \cdot E) \text { ang for }\end{aligned}$

$$
\text { ii) } K_{\text {ay }} \neq \text { Potsition } \Rightarrow(x=0, \quad t=T)
$$

$$
\begin{aligned}
& K_{\text {ay }} \& \text { Potsition areage } \\
& \text { Uany } \Rightarrow \text { Position areage } \Rightarrow \text { Ser } x=0, \text { to } x=A ~
\end{aligned}
$$

$$
\left(\left(\sin ^{2} \omega t\right)=\left(\cos ^{2} \omega t\right)_{\text {arg }}=\frac{1}{2}\right)
$$

$$
\text { Karg }=\frac{\frac{1}{2} m 0_{0}^{2} \int_{x \rightarrow 0}^{x 2 A}\left(A^{2}-x^{2}\right) d x}{\int_{0}^{n} d x}
$$

8

$$
\begin{aligned}
\begin{array}{l}
\text { Kaing } \\
\text { position }
\end{array} & =\frac{1}{3} m \omega^{2} A{ }_{2}^{2} \\
U_{\text {pastion }} & =\frac{\frac{1}{2} m \omega_{0}^{2} \int_{0}^{A} x^{2} d x}{\int_{0}^{A} d x}=\frac{1}{6} m \omega^{2} A^{2}
\end{aligned}
$$

$$
U_{\text {posidon }}^{\text {ang }}=\frac{1}{6} m \omega^{2} A^{2}
$$

$$
\begin{aligned}
& K=\frac{1}{2} m \omega^{2} A^{2}\left(\cos ^{2} \cot t\right) \\
& K_{\text {any }}=\frac{1}{4} \operatorname{mos}^{2} A^{2} \text {) } \\
& U=\frac{1}{2} m \omega^{2} A^{2}\left(\sin ^{2} \cos t\right)
\end{aligned}
$$

D) Force methed $V o$ defarmine ti peries or frequenay of sition.

Disc rools over the surfoce coithock slipning.

1) Pind the time perid of sorcillasion. Any ${ }^{2}$

$$
\begin{equation*}
k x-f=m_{a} \tag{1}
\end{equation*}
$$

$$
f \times R=\frac{m R^{2}}{2} \cdot 2
$$

(ferce)

$$
f=\frac{m a}{2}-\text { (2) }
$$

$$
k x-f=2 f
$$

$$
f=\frac{k x}{3}
$$

$$
\text { Fret } \left.=f-k x \quad \int s+c\right)
$$

$$
F=-\hat{k} x
$$

$$
=\frac{k x}{3}-k x
$$

$$
\begin{aligned}
& =-\frac{2 k i}{3} x \\
& \rightarrow k_{666}=\frac{2 h}{3}
\end{aligned}
$$

(Disc rolls with ourl sliveping.

Find the time pariod af orcilletion
Ahy
क

$$
\begin{align*}
& 2 k x+f=m a \\
& 2 k x \times k-f k=\frac{m k^{2}}{2} \cdot \alpha \\
& 2 k x-f=\frac{m a}{2}-2
\end{align*}
$$

Fromeq ar and (ion

$$
\begin{aligned}
f & =\frac{2 k x}{3} \\
\text { Fret } & =-\left(2 k x+\frac{2 k x}{3}\right) \\
& =\left\{\frac{8 k}{2}\right\} x \\
& T=2 \pi \sqrt{\frac{3 m}{8 k}}=\frac{8 k}{3} \\
& =2 \cdot
\end{aligned}
$$

Drederct H
(-x)

in the giten condition.
Plank ì in equillioricom Anill
If the plank is slightly distorfin honzonctal direction it oscillceter simple
harmanically fird the time peried of oscillater
Aory 's

$$
\begin{align*}
N_{1}+N_{2} & =m g-1 \tag{1}\\
m g\left(\frac{l}{2}+x_{2}\right) & =N_{2}+l \\
N_{2} \geq & \frac{m g}{l}\left(\frac{\varphi}{2}+x\right)
\end{align*}
$$

$$
\begin{aligned}
A S_{1} & =m g-N N_{2} \\
& \Rightarrow m g-\frac{m g}{d}\left(\frac{l}{2}+x\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { 20ng60 } m g-\frac{m g}{2}-\frac{m g x}{l} \\
& y 2 m g l-m g l-2 m x l
\end{aligned}
$$

$$
\therefore \frac{2 m g l-m g l-2 m g x}{2 l}
$$

y mas and rosy

$$
\triangle \frac{m g}{l}\left(\frac{l}{2}-x\right)
$$

$$
\begin{aligned}
f_{k_{2}} & >f_{k_{1}} \\
\text { Fnet } & =f_{k_{1}}-f_{k_{2}} \\
& =l l\left(N_{1}-N_{2}\right) \\
& =-l l \frac{2 m g x}{l}
\end{aligned}
$$

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{m l}{2 \ln \theta g}} \\
& T=2 \frac{\pi}{2 n} \sqrt{\frac{l}{2 \lg g}}
\end{aligned}
$$

[6. Srectafa parkele oscillating simple position ic according sogiton valacion. why where x and bare some "ind" cony s"

1) Find the Angular frequency "co'

$$
d \cdots
$$

$$
\begin{aligned}
& v=\sqrt{\left(\alpha-\beta x^{2}\right)} \\
& v^{2}=\alpha-\beta x^{2} \\
& \text { diff. war. A tox } \\
& \left.\not \alpha^{\prime} v \frac{d v}{d x}\right\}=0-2 / \beta x \\
& a=-\beta \cdot x \\
& \omega=\sqrt{\beta} \left\lvert\, \begin{array}{l}
a=-\omega^{2} \alpha \\
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\beta}}
\end{array}\right.
\end{aligned}
$$

WWW.GRADESETTER.COM
problem bosed on Spring-mars system L-

$$
k_{2}=k\left(1+\frac{l_{1}}{l_{2}}\right) \times l_{2}=l \cdot \frac{m_{1}}{m_{1}+n_{2}}
$$

$$
f=-k x
$$

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

$$
\begin{aligned}
& k_{1}=k\left(1+\frac{l_{2}}{l_{1}} \text { or } l_{1}=l \cdot \frac{m_{2}}{m_{1}+m_{2}}\right.
\end{aligned}
$$

WWW.GRADESE TTER.COM
(A)

Notes when bedy in kept in Gisarivy free posith.

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

WWW.GRADESETTER.COM
ls choice

Spring Pendulum:-

80,
Here in thin position time period is not change in any case.

Note: \Rightarrow

$$
\begin{aligned}
& \text { Kequalent } \sqrt{m}=2 \pi \sqrt{\frac{m}{K}}
\end{aligned}
$$

Find the Time peried of oscill sion. and then reteried (where spring is sillowtes simple hormonitalle Risis

Anv

Paule edflecect

$$
\begin{align*}
& \because \text { able ad fle enanto } \\
& x=x_{1}+x_{2} \text {-(1) } \\
& \frac{d^{2} x}{d x^{2}}=\frac{d^{2} x_{1}}{d t^{2}}+\frac{d^{2} x_{2}}{2 t^{2}} \text { (Double dibborafoistand) } \\
& =-k x \\
& m_{2} \frac{d^{2} x c_{2}}{d t ?}=-k x \tag{2}\\
& \left\{q_{(1)}\right\} \times m_{2}+\left\{q^{2}(2)\right\} \times m_{1} \\
& m_{1} m_{2}\left(\frac{d^{2} x_{1}}{d t^{2}}+\frac{d^{2} x_{2}}{d t^{2}}\right)=-k_{2} c\left(m_{1}+m_{2}\right) \\
& m_{1} m_{2} \frac{d^{2} x}{d x}=-k \cdot x\left(m_{1}+m_{2}\right)
\end{align*}
$$

$$
a=\frac{d^{2} x}{d t^{2}}=\int_{2}
$$

arided
iflt \rightarrow

$$
\left.\tau_{2} 2 \pi \sqrt{\frac{m_{2}}{k_{2}}} \quad l_{1}=l \cdot \frac{m_{2}}{\left(m_{1}+m_{2}\right)} \right\rvert\, l_{2}>l \cdot \frac{m_{1}}{\left(m_{1}+m_{2}\right)}
$$

$\pi 22 \pi \sqrt{\frac{m_{1}}{R_{1}}}$

$$
T=2 \pi \sqrt{\frac{m_{1} m_{2}}{k\left(m_{1}+m_{2}\right)}}
$$

(1) $2 \frac{2 \pi}{T}$

$$
k_{1}=k\left(1+\frac{l_{l}}{d_{l}}\right)
$$

$$
=\sqrt{\frac{K}{\mu}}
$$

$$
=k\left(1+\frac{m_{1}}{m_{2}}\right)=k\left(\frac{m_{1}+m_{2}}{m_{2}}\right)
$$

Dlock in sis dipplaced verkically div drechor dow, af oreillop in on on

$$
\begin{aligned}
\text { Fret } & =-2 T \\
& =-4 k: x
\end{aligned}
$$

Energy method to calculate the time prod of oscillohon or frequency a b oscillation.

slipping over the sue foo
11 Find the time period of oscillation.
Working steps:-
Step ' 1 ': \Rightarrow Find the total mechanical energy (E) af the oscillating system in displaced position - $x^{\prime \prime}$ (at mean position')

$$
\begin{array}{r}
\text { Step 21- } \frac{d E}{d t}=0 \quad v=\frac{d x}{d t} \\
a=\frac{d v}{d t}
\end{array}
$$

step 3 L-

$$
a=-\omega^{2} x
$$

10, Solution:-
$E=\frac{\frac{1}{2} m v^{2}+\frac{1}{2} m \frac{m k^{k}}{2} \cdot\left(\frac{v^{2}}{2 a^{2}}\right)+\frac{1}{2} k x^{2}}{(\text { Disk) }}$

WWW.GRADESETTER.COM
(lst choice

$$
E=\frac{3}{4} m v^{2}+\frac{1}{2} k x^{2}
$$

Step 2:-

$$
[\infty \Rightarrow
$$

$$
\begin{aligned}
& \frac{d E}{d t}=\left(\frac{3 m}{42}\right) \cdot \frac{2 v \cdot \frac{d x}{d t}+\frac{1}{x} k \cdot 2 x\left(\frac{d x}{d x}\right)}{\left(\frac{d}{x}\right.} \\
& \left(\frac{3 m}{2}\right) y \cdot(a)=-k x \not x \\
& a=\frac{12 k}{3 m}: x \\
& \frac{\omega^{2}}{\omega^{2}} \\
& \omega=\sqrt{\frac{2 K}{m}} \\
& T=2 \pi \sqrt{\frac{3 D}{2 K}}
\end{aligned}
$$

WWW.GRADESETTER.COM
(lathoice
[共 $1, \rightarrow 12,13,14$

स्र० $29 \rightarrow 1,2,9,4,5,67,8,9,10,11,10,=-21$
Problem bacet on Amplitudas.

Fthe black
Fint the Amplitucte of orcillation of

$$
\prod_{\substack{m g}}^{p k x} x^{a}
$$

$$
\begin{aligned}
& m g-k x=m a \\
& k x=m g-\frac{m g}{3} \\
& x=\frac{2 m g}{3 k}
\end{aligned}
$$

$$
x=\frac{2 x_{0}}{3} \quad \text { so, Anplitided } x_{0}-\frac{2 x_{0}}{32}
$$

$$
k=100 \mathrm{~N} / \mathrm{m}
$$

Collision b/w the block and the arall is clastic.

1 Find the time pavod of oscillation af the black?

WWW.GRADESEHTER.COM

(1)

Ees-

(In the ginen fogure)

Initially the compresion in the spring is x_{0}
Spring is faitho compresseot by roany then releasa.

1) Find the time pried af oscilliadon
af the block.
collision blco the.
collision b/w the block and the crall '

WWW.GRADESETTER.COM
1stathoice

$$
\sqrt{\infty}+4,3,6,0,0
$$

$$
t_{6}=\frac{2 T}{6}=\frac{t}{3}=\frac{2 \pi}{3} \sqrt{\frac{m}{1}}
$$

phasor method $:>$

$$
\theta=20 . t
$$

$$
\begin{aligned}
& x_{2} A \cos \left(\theta+\phi_{0}\right) \\
& x=A \cos \left(\cot +\phi_{0}\right) \\
& y=A \sin \left(\cot +\phi_{0}\right)
\end{aligned}
$$

(6)

Tho particles ar oscillating simple same and about with same time period and about ramp arm mean. position and with same Aplite af af oscillation in maxi distance of w two porkcles, 20 cm

1) Find the time afore which Start they

And!

$$
\begin{aligned}
& \frac{\pi}{3}=\omega \cdot t+\omega t \\
& \frac{\pi}{3}=2 \omega t \\
& \omega c t=\pi / 6 \\
& t=\pi / 6 \omega
\end{aligned}
$$

3. Ancular S.H.Mn
$C_{\text {net }}=-k \cdot \theta=i \alpha$

$$
m \rightarrow \sum_{I_{m \cdot 0} \cdot n} .
$$

$$
\begin{aligned}
& \alpha=-\omega^{2} \cdot \theta \\
& \omega=\sqrt{\frac{k}{T}} \\
& T=2 \pi \sqrt{\frac{T}{K}}
\end{aligned}
$$

$\Rightarrow \operatorname{simple}$ Pendulum: \Rightarrow

$$
\begin{aligned}
& C_{0}=-(m g \sin \theta) \ell \\
& C_{0}=-(m g l) \sin \theta
\end{aligned}
$$

$\longrightarrow($ No.t $3.4 \cdot m)$
For vay sinall Angto " θ "
$\sin \theta=\theta$ "

$$
\sin \theta \simeq \theta
$$

(lssechoted

$$
\begin{aligned}
& z_{0}=-(m g l) \theta \\
& \left(\omega=\sqrt{\frac{m g l}{T_{0}}}\right) \\
& I_{0}=\mathrm{ml}^{2}
\end{aligned}
$$

$$
\omega=\sqrt{\frac{\operatorname{mg} t}{n^{2}}}
$$

$$
\left(\cos 2 \sqrt{\frac{g}{t}}\right)
$$

$$
T=2 \pi \cdot \sqrt{\frac{l}{d_{e} t}}
$$

(4)

$$
\left|g_{\text {eff }}\right|=|\vec{g}-\vec{a}|
$$

where:-
$\vec{a} \Rightarrow \operatorname{Aec}^{n}$ afe point af secspension " 0 ".

WWW.GRADESETTER.COM
(lathoice

$$
\begin{aligned}
& \begin{array}{|c|}
\hline e \\
0_{m} \\
\operatorname{tg} \\
\hline
\end{array} \\
& g_{\operatorname{cob} b}=(g+a) \\
& T=2 \pi \sqrt{\frac{l}{g_{e f f}}}
\end{aligned}
$$

(.).)

(1) Ieff $=$ (Infinids)

WWW.GRADESETTER.COM

$$
T=2 \pi \sqrt{\frac{l}{g \cos \theta}} \sqrt{i+n}+\frac{i n}{g \cos \theta}
$$

$$
\begin{aligned}
& \vec{g}=(g \sin \theta) \hat{u}^{n}+(g \cos \theta) \jmath^{n} \\
& \mid \vec{g} \text { ef } \theta=|\overrightarrow{g-a}|=g \cos \theta
\end{aligned}
$$

WWW.GRADESETTER.COM

$$
g_{\text {ef } 6}=\sqrt{g^{2}+\left(\frac{v^{2}}{R}\right)^{2}}
$$

secord Pendaleem
\longrightarrow Its time pereod is 2seconds,

$$
T=2 \pi \sqrt{\frac{l}{g}} \quad l \lll \lll<y_{p_{R}}
$$

SPadiunaf
conth,
7) Time periodaf simple pendulum whose 11 length (l) is comparatle to radius af carth(i)

$$
T=2 \pi \sqrt{\frac{1}{g\left(\frac{1}{d}+\frac{1}{R}\right)}} \rightarrow \text { (briginal formela) }
$$

i) If

$$
\begin{aligned}
& \text { ff } \quad l \gg R \\
& \frac{1}{l} \lll \ll \frac{1}{R} \\
& T=2 \pi \sqrt{\frac{R}{g}} \\
& T=84.6 \mathrm{~min}
\end{aligned}
$$

ii) $D l e l=R$

$$
T=2 \pi \sqrt{\frac{R}{2 g}}
$$

(ii) If

$$
\begin{aligned}
& l 《 \lll \ll R \\
& \frac{1}{l} \ggg \gg \sqrt{\frac{1}{2}} \\
& T=2 \pi \sqrt{\frac{l}{g}} \\
& 1
\end{aligned}
$$

Compound/Physical pendulum

$$
\begin{aligned}
& \omega=\sqrt{\frac{m g d}{20}}
\end{aligned}
$$

Henc:-
$T_{0}=$ It the m:ODal oscillating body about an axis through point af suspeasion and "L" to the planealo oseillation.

$$
T=2 \pi \sqrt{\frac{2 m R^{2}}{m g \cdot R}}
$$

$$
T=2 \pi \sqrt{\frac{2 R}{g}}
$$

Torsional Pendullem: \Rightarrow

Tersional constank

$$
\begin{aligned}
& T \alpha=-k^{0} \theta \\
& \alpha=\frac{-k}{T} \cdot \theta
\end{aligned}
$$

$$
\omega=\sqrt{\frac{K}{\overparen{ }}}
$$

WWW．GRADESETTER．COM
在 Gliwice
shortcut
For Same phase：－

$$
n T_{8}=(n-1) T_{l}
$$

where：－
$T_{s}=$ Time Period af＂shorten＂Pendulum
$T_{l}=$ Time Period al＂longe＂Pendulum
For Simple Pendulum \Rightarrow

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

for Spring Pendulum ：m

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

（No ．af oscillation $(n)=\frac{t}{T}$
$t \Rightarrow$ total timealo observation

$$
T \Rightarrow \text { Time Period, }
$$

(st choice)

$$
A t \rightarrow C
$$

writ. plate

$$
\begin{aligned}
& m \omega^{2} A \geqslant m g \\
& A \geqslant \frac{g}{\omega^{2}}
\end{aligned}
$$

Combinathom/superposition of S.H.Ms
18t: $\Rightarrow \mathrm{SHM}_{8}$ in same direction are combined same prequency of ascillation.)

$$
\begin{aligned}
& x_{1}=A_{1} \sin \cot t \\
& x_{2}=A_{2} \sin \left(\cot t+\phi_{13}\right) \\
& x_{3}=A_{3} \sin \left(-\cos t+\phi_{2}\right)
\end{aligned}
$$

$$
\vec{x}=\overrightarrow{x_{1}}+\vec{x}_{2}+\vec{x}_{3}
$$

Vecter mesthod $: \Rightarrow$

$$
x=\text { Ares } \operatorname{Sin}(\cot +\theta)
$$

Now: -

For two Sums:-

(xe).)

$$
\begin{aligned}
& x_{1}=3 \operatorname{sincost} \\
& x_{2}=4 \cos \cot =4 \sin \left(\text { wot }+\frac{\pi}{2}\right) \\
& \text { Ares }=\sqrt{3^{2}+4^{2}}=5 \text { units }
\end{aligned}
$$

Exp) $\left.x_{1}=A \sin \omega\right)_{1}$

$$
x_{2}=A \sin (\text { at }+\pi / 2)
$$

$$
x_{3}=A \sin (\cos t+\pi / 4)
$$

$$
\begin{aligned}
A_{r e s} & =A+(\sqrt{2}) A \\
& =A(1+\sqrt{2})
\end{aligned}
$$

$$
x=A(1+\sqrt{2}) \sin (\cos t+\pi / 4)
$$

$x=A \sin ^{2} \omega t+B \cos ^{2} \cos t+c \sin \omega t \cdot \cos \cos t$
If $A=-B$ and $C=2 B$
s.H.M

$$
\begin{aligned}
& x=B\left(\cos ^{2} \omega t-\sin ^{2} \omega t\right)+2 B \sin \omega t \cos \omega t \\
& x=B \cos \omega t+B \sin 2 \omega t \\
& \text { Ares }=\sqrt{B^{2}+B^{2}}=\sqrt{2} B
\end{aligned}
$$

$\operatorname{cose}: 2 \Rightarrow$
Tasso SHMo ab same frequency and mutually " "are combined

$$
x=A_{1} \sin a t
$$

and $y=A_{2} \sin \left(\cot +\phi_{0}\right)$

$$
\begin{aligned}
& y=A_{2}\left[\sin a_{2}+\cos \phi_{0}^{1}+\cos a t \sin \phi_{0}\right] \\
& y=A_{2}\left[\frac{x}{A_{1}} \cos \phi_{0}+\sqrt{\left(1-\frac{x^{2}}{A_{1}}\right)} \sin \phi_{0}\right]
\end{aligned}
$$

89.

$$
\frac{x^{2}}{A_{1}^{2}}+\frac{y^{2}}{A_{2}{ }^{2}}-\frac{2 x y \cos \phi_{0}}{A_{1} A_{2}}=\sin ^{2} \phi_{0}
$$

WWW.GRADESETTER.COM
(i) If $\phi_{0}=0$

$$
\begin{aligned}
& 6 \phi_{0}=0 \\
& \frac{x^{2}}{A_{1}^{2}}+\frac{y^{2}}{A_{2}^{2}}-\left(\frac{x}{A_{1}}\right)\left(\frac{y}{A_{2}}\right)=0 \\
& \left(\frac{x}{A_{1}}-\frac{y}{A_{2}}\right)^{2}=0 \\
& y=\frac{A_{2}}{A_{1}} x
\end{aligned}
$$

ii) If $\phi_{1}=\pi=180$

$$
\text { xas }\left(\frac{x}{A_{1}}+\frac{y}{A_{2}}\right)^{2}=0
$$

iii) If $\phi_{0}=\frac{\pi}{2}$

$$
\frac{x^{2}}{A_{1}{ }^{2}}+\frac{y^{2}}{A_{2}{ }^{2}}=1
$$

If $\quad A_{1}=A_{2}=A$

$$
\binom{x=A \sin \omega f}{y=A \cos \omega t}
$$

www.granfsindokecom

$$
x=A \sin \omega \operatorname{tos}
$$

$$
y=A \cos 2 \cos \alpha
$$

