Dt in athebranch of physics which deal's with it the study of different phonemenon arsociate of with eight.
\rightarrow Newton theory:-

\rightarrow Huggen's theory:-mecharical wave (x)
\rightarrow Young's theenyl-wave,
\rightarrow maxcoell's. Theory: Non-mecharical ware cno-medicem eirequare ori
\rightarrow De Broglie's thesy: Porticlo. (Photrefecthe; \rightarrow in ware (Interferenas)
ctccording to the theory given by ie-broglies light in having dual neeture (Porticle os well on wane notur)

The phenomeron afo light photoelectre effect is enplain using portich nature of light.
whreas the phenomon of light Enterfermee is explain using wave natore light.
(lst Choice

Dikaging rays:-
Convasing roys:-

	objed	A mgege
Rear	Dioers	Concerge.
viofuct	covengs	Diverse

Officer ant Image:-
To define the position of an object Incident rays ar require whereas. to define the position af an Image Reflected /Refracted rays ane required.

Aleont two rays are required to locate an abject or Image.
objects-
a) Real objet

d) An object in said to be real if.
from the position of this object Incident ray's divas
d) Virtual object.

*) A point where choident ray's appear to Connage. called as virtual object .

WWW.GRADESETTER.COM

* Images-

b) A point where reflected or rerfrocted rays actually converge ir called as real Image.

Real Image
a)

a)

b) A point from where reflected or refroded wast appear to diverse incallod as virtual Image.
(*) Reflection of light \rightarrow
If the ray af light falling on a siepace return's bock in the came mediom then thin phenomenon is called as reflection of light.

$$
\text { Nucidat }>+ \text { Normal }
$$

WWW.GRADESETTER.COM

* Lace's of reflection \rightarrow

1) Incident ray, Normal and reflected ray all lie in the same plane.
2.) Angle of Incidence in equal to Angle ab reflection.

* Vector form of the lair of reflection \rightarrow

$\hat{e}_{1} \Rightarrow$ chit vector along Druident ray

$$
\begin{aligned}
& \hat{n} \Rightarrow 111,11 \text { Normal } \\
& \text { 位 } \hat{e}_{2}=1,11 \text { Reflected roy } \\
& |\overrightarrow{A B}|=|\overrightarrow{B D}|=9
\end{aligned}
$$

In $\triangle A B C$

$$
\begin{align*}
& \overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C} \\
& \Rightarrow \overrightarrow{A C}=a C_{1}+a \operatorname{cosin} \tag{1}
\end{align*}
$$

In \triangle ABCD

$$
\overrightarrow{B C}+\overrightarrow{C D}=\overrightarrow{B D}
$$

$$
\begin{align*}
& \Rightarrow \overrightarrow{C D}=\overrightarrow{B D}-\overrightarrow{B C} \\
& \Rightarrow \overrightarrow{C D}=a \hat{C}_{2}-a \cos i \hat{n} \tag{2}\\
& \quad \text { Nore }
\end{align*}
$$

$$
\begin{aligned}
& \text { Nore } \\
& \overrightarrow{A C}=\overrightarrow{C D} \\
& \text { from eq (1), (11) and (II)) } \\
& \text { मूट ज्ञात का } \\
& \begin{array}{l}
A C=\overrightarrow{C D} \\
\text { fromeq (11) and (110) } \\
a \hat{e}_{1}+a \operatorname{cosin}=a \hat{e}_{2}-a \operatorname{cosin}
\end{array} \\
& \hat{c_{e}}=\hat{e_{1}}+2 \operatorname{cosin}=4 \\
& \text { Also, } \\
& \hat{e}_{1} \cdot \hat{n}=\operatorname{Cos}(180-\ddot{l}) \\
& =-\cos \hat{l} \\
& \operatorname{Cosi} i=-\hat{e}_{1} \cdot \hat{n}
\end{aligned}
$$

Whacon
$(80-i)$

807

$$
\hat{e_{2}}=e_{1}^{n}-2\left(\hat{e}_{1} \cdot \vec{n}\right) \hat{n}
$$

WWW.GRADESETTER.COM
ox) A ray af light in falling on a reflecting $\sin f+c$
$i+j-k$ and Normal to the surface in along the direction it ion find out

8014
vays1-

$$
\begin{aligned}
& \hat{e}_{1}^{\bar{t}}=\frac{1}{\sqrt{3}}(\hat{4}+\vec{J} \cdot \hat{k}) \quad \because \hat{A}=\frac{\overrightarrow{H A}}{1 \cdot \hat{k}} \\
& \hat{n}=\frac{1}{\sqrt{2}}\left(\dot{u}^{\hat{j}}\right) \\
& \because \hat{A}=\frac{\vec{A}}{|\vec{A}|} \\
& \left.\hat{e}_{2}=\frac{1}{\sqrt{3}}\left(i^{\hat{3}} \hat{y}-\hat{k}\right)-\frac{2}{\sqrt{\sqrt{2}}}\left(\frac{k}{2}\right)-\frac{1}{\sqrt{2}}\right)(\vec{i}+\hat{j}) \\
& =\frac{1}{\sqrt{3}}(\hat{\imath}+\hat{\jmath}-\hat{k})-\frac{2}{\sqrt{3}}(\hat{i}+\hat{\jmath}) \\
& =\frac{-1}{\sqrt{3}}(\hat{1}+\hat{\jmath}+\hat{k})
\end{aligned}
$$

Es) There are three reflecting surfaces which are mutually pepondicula tococh the.
a ray af light infilling on one of the infare. roe that after

Surfore) the final reflected ray is Parallel but opposite to the incident rays.
Fol Let eqnab Incident ray $=a \hat{i}+-b \hat{j}+c \hat{k}$
When, there say's Incident on $x-y$? plane

$$
\begin{aligned}
& \text { Plan c } \\
& r^{\prime}=1 a \hat{i}+b j^{n}-c k \\
& \text { Ag } a^{m} \text { when there light } r
\end{aligned}
$$

"政" when there light ray incident on $y-z$ plane

$$
\begin{aligned}
& \text { then } \\
& v^{n} 2 \\
& -a \hat{i}+b \hat{j}-c k
\end{aligned}
$$

84 when light rays incident on $x-z$ Plane.

$$
\begin{aligned}
& \text { 夋 } r^{\prime \prime \prime}=-a^{n}-\hat{y}^{n}-c \hat{k} \\
& r^{\prime \prime \prime}=-(a \hat{i}+b \hat{\jmath}+c \hat{k})
\end{aligned}
$$

Here
we see that two rector Incident and reflected one opp in sign it mean is two nectar in in opp. disechon.
e lo

(s) Choice

$$
\begin{array}{rl}
e_{1}^{n} & =a \hat{i}+b \hat{j}^{n}+c \hat{k} \\
n_{1}^{n} & =\hat{j} \\
e_{2}^{n} & 2 e_{1}-2\left(\hat{e}_{1} n_{1}^{n}\right) n_{1} \\
& =? \\
n_{2} & =\hat{k} \\
e_{j} & =\hat{e}_{2}-2\left(e_{2} n_{2}^{n}\right) n_{2} \\
& =? \\
n_{3} & =\hat{i} \\
e_{4}^{n} & =e_{3}-2\left(e_{3}^{n} n_{3}\right) n_{3}^{n} \\
& =-\left(a i+l j+c_{k}^{n}\right.
\end{array}
$$

* Important key points-

1) Ding swing the reflection of light the wavelength, frequency and speed remain unefficetes.
2) If the reflection in taking place from

Rano-Donsor Interface then a phase diffeonco Eलका of I is Dritroduced.
whereas If the reflection ir
taking ploce from dorser rarer Interface
then no phase difference in Introduced.

* Application of reflechonaf light through Plone surfoce (plane mima) \rightarrow
\Rightarrow Image formation: \geqslant a) Point objedi-

b) For entended oficet: -

Some roinf(Dmpertand) aboet Plane mirrarz

1) De the oft'et in real then Image fermed bo the plane mirrer is virtuel and vice-ves
2) The 1 on sefmation of ofject from the wiwn merrer cuith as same as the in distance at

Inage from the $p^{\text {plane mirrer }}$
1i1) The heght af the image farmed bas be chergit the plane mirer en same of the abject.
(1) Linea magnificalon (m) = heightaf Image

$$
\text { Afor plane morr } m=1
$$

fint out the co-ordnate of object formed.

WWW.GRADESETTER.COM
(4) 42) Field of $V_{i e n} \rightarrow$
(18) Even if the size of the abject in very longe and that of mirror ivory small full Image of the object is still formed but whetha conserve cion Fie the office or not Image or not it is decided by field of of view.

The field af view af any Image is the region which lies b/w too expesmly reflected rays ar aly'esme cen see the rage Orily if his eye lie in the field african. i)
(sss choice)
o)

In the figure shown an olseme is moving witt constant vel. "v"olongtha dine AB find out for hour much duration of time the obscene con see the Image of point affect 0 -'
881^{n}

$$
t=\frac{3 L}{v}
$$

(time= $\frac{\text { Distaenil }}{\text { velour }}$
θ.
nuriciul-ciculas hapermeres:
floor
Radius elf circult plan mo r $=20 \mathrm{~cm}$
on the seeking of 200 m a circula "Plan bes of rodiver 2 am is fires. find cut on the line "OA"WWMLGRADESERTER SPMM
of beght from point "O" show thect aloto reflection acirala" area on the grourt having radices " sm "can be elluminatis?
$80 l^{n}$

Radies of circula splane mirrer $=20 \mathrm{~m}$ Height of room $=3 \mathrm{~m}$

$$
\begin{aligned}
\tan \theta & =\frac{20}{h}=\frac{80}{300} \\
\Rightarrow h & =75 \mathrm{~cm}
\end{aligned}
$$

be) Minim
minimum height of the plane moro r required to the foll mirage by the Person himself.

Height of man $=2(a+b)$
height af mirror $>(a+b)$
minimum length of miser $=\frac{\text { height of man }}{2}$
(1)) Under this Condition a mon con seethe full Image of the botom most portife the plane, mister in at the height half af the height af eyes from the ground surface.
6) minimum coidfle of the plane miser required to see the full Image of the force by? person himedy.

as width af force
$b=$ seperathon $b / \omega^{\prime \prime} 2^{\prime \prime}$ yen
$3 b+4 x=a$
$4 x=a-3 b$

$$
x=\frac{a-3 b}{4}
$$

Filth af mirror $=$ (bur.

Notes

If a maiman see with one eye orly the mintoien with ale the plane mirror.

WWW.GRADESETTER.COM
(lst chote
required phould le half of the width af the foo

- Dexiction Produced by plane nirver
a) For single reflection \rightarrow.

It itthe ongle through which the pooth of roy of light shift's duing the reffection.

$$
\delta=180-2 i
$$

b) Por multiple reffection \rightarrow
(5) The angle b/w two plane mircrits is "o" Array of light is trident on one of the plane miverer at an an angle " α ' prewe-that after ore reflection through each plane miner the total deviation Produces does not dependerid on the angle " α ".
Sol

$$
\begin{align*}
& S_{1}=180-2 \alpha \\
& s_{2}=180-2 \beta \\
& S_{\text {total }}=360-2(\alpha+\beta) \\
& 0+90-\alpha+90-\beta=180 \\
& \theta=\alpha+7] \tag{10}\\
& S_{\text {total }}=360-20
\end{align*}
$$

Results-
from the arose expression the total deviation depend's only upon the angle angle $\frac{\text { 4/0 two plane minions }}{\text { sing }}$
8.

Al. of Images formed by the (B) two
(a) If tho plane miner are kent poralblto

No. of Image formed $=\infty$
lane mirrer are kept at an
(b) If two plane mirrer are kept at an
angle b/co them \rightarrow angle b/00 them \rightarrow

(I) If "n" iे even indegan then No. of stmeges formed $=(n-1)$
द रखें (母) if "n" è odd Integen
सबरसे कलग है \Rightarrow If ofject is kopt at angle blecotr then no Pecfor की सलावा कही

91. (8) D6 $\theta=90^{\circ}$

$$
n=\frac{360}{90}=4
$$

$$
\begin{aligned}
& =\frac{360}{90}=4 \\
& \text { No of Images }=33^{\prime \prime}
\end{aligned}
$$

Note \Rightarrow Di we consider the point of e Intersceton of mister's at a centre as a circle is droion having roadies equal to Peperation of the object from the point of Drtersecton then all the Images lie on circumference of the circle.
agc. If $\theta=72^{\circ}$ and abject eskept at angle bisceto.

$$
n=\frac{360}{y_{2}}=s
$$

No Of

$$
\text { Pages }=5=\cdots 1
$$

\geq WWWW.GRADESETTER.COM

WWW.GRADESETTER.COM
(st Choice

Tx 3.) Df $\theta=72^{\circ}$ and ofject in not kept at bisedter
Soln

$$
n=\frac{360}{72}=s
$$

No of Imeges $=5$

9). 5 pretion af ofiect and plane mirrone \rightarrow

15 If plave miner in ftationcuy and afject and moving

2. If ofiect in stationony but plane mirrer in moving: \rightarrow

$$
\begin{aligned}
& y-x=z-y \\
& z=2 y-x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d z}{d t}=\frac{2 d y}{d t}-\frac{d x}{d t} \\
& V_{T}=2 r
\end{aligned}
$$

Find out velocity of Enrage

$$
\begin{aligned}
\frac{d z}{d t} & =2(-2)-(4) \\
& =-8 \mathrm{~m} / 8 \mathrm{cc}
\end{aligned}
$$

suppose find mimer
the $y-z$ plane sothat

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{2 d x}{d t} / \frac{d x}{d t} \\
& =\frac{2 d-x}{d t} /-\frac{d x a 4}{d t}
\end{aligned}
$$

method af Pelative velocity \rightarrow
Suppose the miser en lying in y-zplane
sothat x-axis ei lan to. t.

$$
\begin{aligned}
& \vec{V}_{m}(g)=\vec{V}_{o m}(g) \\
& \vec{V}_{m}(z)=\vec{V}_{o m}(z)
\end{aligned}
$$

(v) Along x-arip

$$
\vec{V}_{P_{m}(x)}=\vec{V}_{O N(x)}
$$

in. ouestino $\Rightarrow 114$

Amon in moving along x-aris with the Constand rel. " v " foind out velocity of his
Amage.

$$
\text { (a) } V \sin \theta i+v \cos i
$$

(o) $V \cos \theta+V \sin \theta{ }^{\prime}$
(c) $\sqrt{2} \sin 2 \theta \hat{l}+V \cos 2 \theta j$
(d) $\operatorname{vos} 2 \theta \theta^{\circ}+V \operatorname{An} 2 \theta s^{A}$
(st chow ice

$$
\begin{aligned}
& v\left[\cos ^{2} \theta-\sin ^{2} \theta\right] \\
& =v \cos 2 \theta i+v \sin 2 \cos ^{\circ}
\end{aligned}
$$

To) Three plane mires ore mutually Lore. to each other and an object si kept infront of thin system find out no. of Image formed.
801^{n}
Total number of Image formed $\Rightarrow 7^{" 7}$ werremecentecorrwern when
${ }_{1}{ }^{\circ}$
00

Cs

10 Effect al rotation
Plane micrecra on Incident ray on
(a) If only Decident ray is rotated \rightarrow
82 :

In thin care the reflecting ray rotates throws the same ange in opposite sense,
(b) If only plane mirror ins rotated \Rightarrow

In thincore the reflected ray rotates In thi core the twice the angle af serense. of
through the ame inver in the
plane miroct

In the figure shocon foint out the lineervelocity af pirght SPot DB 4The plane mires kep at the centrein rotated with ang. vel Arodfree
(a) 10 clocknise tirechon
(b) To Antielockoize directon.

So/n
a) clockcoisse.
$\mathrm{CO}_{2} 4$ ratisio

$$
\begin{aligned}
& V 2 R \omega \\
& =\sqrt{64} \\
& =12 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

WWW.GRADESETTER.COM
(sst Choice

$$
\begin{array}{r}
\text { b) Anticlockoois } \\
w>0 \\
v=0
\end{array}
$$

11.) Lateral Inversion \Rightarrow

As shown is the figure if the ofsemen in present b/w the objet and mirror then right P act is appeos on the left and left is opperied on the right.

Whores if the offering is present
behind then front is appeared on the bock ont bock in appeared in front:

(Istchoice) SPhorical mirror

2a) concave mirrer
b) Convex miner

Spherical misrer is a port of holospher wher
One of the sufoce in reflecting suffocer
Df the reflecing sirfoce is Dhside thar
the mirrer in concare.
and if outside the misrer is conven-
(4) Some basie tanm's af spherical minerit
D Cerbe af Canvature (C) 2. Radies of Corvatie (R)
3) Aperthe
iv) pole((P)
vprincipal arjp
v) Facues (F)
vil) Focal length (f)

- 1) Cense af carathe(c) 1 (It in the centre of spile from where mirerkos been mode.

Radius of convaterei ((R) If in the radices of sphere from where mires hos been made
Aperture: (4) Lineo. Aperture
The apature of spherical mirror give the information about it's size.

It is dimensioncof ririry
4.) Pole \rightarrow (P) \Rightarrow Dit is the Point on the surface of spherical mirror where the line joining cents af convatene ans cense af circular section af spherical mirror Intercept.
5) Principal avis \Rightarrow

If in the line joining centre af convecture and pole

WWW.GRADESETTER.COM
(st Choice)
(Conversing)
(Diversing.)
Concave mimer conven mirer.

Defintion:-
IX If the Thcident rays are Porallel and coser to principal anis (Ponarial rays) then aftentho reffection they eithe converse at a point on the Psincipal aris (Concare miserd or appear to diverse from a point on the Principal aris (conver nisgo), Theippoint is calls as foeus.

WWW.GRADESETTER.COM
iii) Focal length:

It in the sepraton b/w pole and foemen
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

cone (1vits

Ray diagrom for concane mirrer \rightarrow

1. If ofject in kept at " α "

Position of Image: \rightarrow At F.
Natue \Rightarrow Rcal and Diveited
size \Rightarrow Highly diministan
2. When obicet is kert beyond " C ".

Position of Dlong $1 \rightarrow B / \omega \quad$ " F " and"e "A
Nature $1 \rightarrow$ Real and invertes
size \rightarrow Amaller then abtel-
वार्वीक Www? ERADESETER.com
13.) If object is kept at "̈". $^{\prime \prime}$.

Position of dmage: - at C itpelf
Natereaf Dmage \Rightarrow Real and Divioved size 2- Same os that af object.
4. If object is kept b/w "C"and "E "

position of Imegt Beyond C
Nathe of Image:-Realand Divirated size:- loge thon obsed.

If object ii kept at "F:

Position of Emagesiat a
Natureafi-Real and Diverted
size:- Highly magnified.
Q 46.
If object in kent s/w "F" and poler-

Position of Images- Behind the new
size \Rightarrow longe than abject
Nature \Rightarrow virtual and erect
2. Ray diagram for onvex mibress If obited in kept at "a"

1

Dosition af Image to F
saties- Mrtual anderet

* size:- Highly deningles

2 If object è kert, blw candpola-

Positimaf itmage $=D / 10$ fond pole.
Natie = virtad on creo
sire \& inalle than aby bes

WWW.GRADESETTER.COM of comatore fer tho spherical mirtel

$$
C D=D A=\frac{R}{R} V
$$

In $\triangle C D I$

$$
\begin{align*}
& \cos \theta=\frac{C D}{F C}=\frac{R}{2(F C)} \\
& P C=\frac{R}{2} \theta \sec \theta \tag{1}\\
& P F=P C-F C \\
& f=R-\frac{R}{2} \sec \theta \\
& f=R\left(1-\frac{\sec \theta}{2}\right)
\end{align*}
$$

- For Paranial rays, $Q \rightarrow O^{\prime \prime}$

$$
f=\frac{R}{2}
$$

(ss Choice
Sign convension for spherical mirrasisis
All the Fepeation'ron (of object, Drageon U He Repeation (an meowed from $\frac{p o l e}{11}$

- facies) are the spherical mirror.
The distance is measured ofong the direction af Incident say are taken with the" sign and along the direct on opp. to incident ray distances ore taken with te sigh.

All the height's maxed above the "principal ar is ore take withe "the" sign and height beloue the principal axis are taken with "re" sign.
 \rightarrow जौहगठ सी fonula है। उसे पढे़
$\xrightarrow{\text { Mirrer formula for spderical mirrer } \rightarrow}$

$$
\begin{align*}
& \tan \theta=\frac{A B}{F A}=\frac{G_{1}}{F H}=\frac{A^{\prime} B^{\prime}}{P F} \\
& \Rightarrow \frac{A^{\prime}}{A^{\prime} B^{\prime}}=\frac{F A}{P F}=\frac{P A-P F}{P F} \\
& \tan \phi=\frac{D E}{F E}=\frac{A^{\prime} B^{\prime}}{F A} \\
& \Rightarrow \frac{A B}{P F}=\frac{A^{\prime} B^{\prime}}{F A^{\prime}} \\
& \Rightarrow A^{\prime} \\
& \Rightarrow A^{\prime} B^{\prime}=\frac{P F}{F A^{\prime}}=\frac{P F}{P A^{\prime}-P F}
\end{align*}
$$

From eq(D) and (2)

$$
\frac{P A-P F}{I P F}=\frac{P F}{P A^{\prime}-P A}
$$

(st Choice)

$$
\begin{aligned}
& P F=-f \\
& P A=-\mu \\
& P A^{\prime}=-v
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proneq(iiv) } \\
\Rightarrow & \left.\frac{-u-(-f)}{-f}=\frac{-f}{-v-(-f}\right) \\
\Rightarrow & \frac{-u+f}{-f}=\frac{-f}{-v+f} \\
\Rightarrow & -u v-u f-v f+f^{2}=f^{2} \\
\Rightarrow & u v=f(u+v) \\
\Rightarrow & \frac{1}{f}=\frac{u+v}{u v}
\end{aligned}
$$

$$
\frac{f}{f}=\frac{1}{v}+\frac{1}{u}
$$

Vontel
focal distanv.
length
Then formula isuxd to find out IDsition al spherical mirrage if the focal longth spherical mirdor an
the ofject is giron.
miver formula for sphericalaccarror

इस सीक का क्यान करें

$$
\sim_{==-\pi^{n}}^{\text {viratua/ }}
$$

$\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C$ are similan
(एक वा Cant convatur से

$$
\begin{equation*}
\therefore \frac{A B}{A^{\prime} B^{\prime}}=\frac{C B}{C B^{\top}} \tag{i}
\end{equation*}
$$

- Agein, $\triangle A B P$ and $A^{\prime} B^{\prime} P$ are similon (एक बत्रो से $\begin{aligned} \\ \text { tigle }\end{aligned}$

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{P B}{A B^{\prime}}
$$

$$
(i i)
$$

equationg (i) and (ii),

$$
\frac{C B}{C B^{\prime}}=\frac{P B}{P B^{\prime}}
$$

Butall dietanc along the principal aris be measued from pole af the mirver

$$
\frac{P C-P B}{P C+P B^{\prime}}=\frac{P B^{\prime}}{P B^{\prime}}
$$

using neue contesian sign convention ewr.

$$
\frac{-R+u}{-R+V}=\frac{-u}{V}
$$

$-V R+U V=4 R-U V$ or $V R+U R=$
fing by UVR,

$$
\text { Lu } \left.+\frac{1}{v}=\frac{2}{R}=\frac{2}{2 f} \text { or }\right]_{\text {www.GR PESETTER. }}^{\frac{1}{v}}+\frac{1}{u}
$$

WWW.GR DESETTER. CQMI

Proof -
Here, $\triangle A B C$ ans A'B'C are similar

$$
\begin{equation*}
\frac{A B}{A^{\prime} B^{\prime}}=\frac{C B}{C B^{\prime}} \tag{i}
\end{equation*}
$$

Again, $\triangle A B P$ and $A^{\prime} B^{\prime} P$ are similar.

$$
\begin{equation*}
\therefore \quad \frac{A B}{A^{\prime} B^{3}}=\frac{P B}{P B^{\prime}} \tag{ii}
\end{equation*}
$$

Now, Fromeq east and eq and,

$$
\frac{C B}{C B^{\prime}}=\frac{P B}{P B^{\prime}}
$$

But all distances along the Principal axis should be measured from the pole of the mirier.

$$
\frac{P B+P C}{P C-P B^{\prime}}=\frac{P B}{P B^{3}}
$$

using, near cartesian sign convention.

$$
\frac{-u+R}{R-v}=\frac{-v}{u}
$$

$-u v+v R=-u R+u v$ or $v R+u R=2 u v$ me get Dividing by uVR,

$$
\frac{1}{u}+\frac{1}{v}=\frac{2}{R}=\frac{2}{2 f} \text { or } \frac{1}{4}+\frac{1}{v}=\frac{1}{f}
$$

linear magnification for spherical

$$
\begin{aligned}
& \tan \theta=\frac{A B}{P A}=\frac{A^{\prime} B^{\prime}}{P A^{\prime}} \\
& A B=H_{0} \\
& A^{\prime} B^{\prime}=-H_{P} \\
& P A=-\mu \\
& P A^{\prime}=-V \\
& \Rightarrow A^{\prime} B^{\prime} \\
& A B=\frac{P A^{\prime}}{P A} \\
& \Rightarrow \quad A^{\prime} B-H_{P}=\frac{-V}{U}
\end{aligned}
$$

\rightarrow Dimoge distance

$$
\begin{aligned}
& m=\frac{H_{T}}{H_{0}}=\frac{-v}{v} \rightarrow \text { object } \\
& m=\frac{H_{T}}{H_{0}}=\frac{-v}{u}=\frac{f}{f}=\frac{f-v}{\square}
\end{aligned}
$$

f whlw.GRADESETTER.cOM

GRAPESETTER.COM

In $\triangle A B C$ and $\triangle A^{\prime} T^{\prime} C$ ore similar

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{C B}{C B^{\prime}}
$$

Again, da PABP and $A^{\prime} B^{\prime} P$ are similar.

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{P B}{P B^{\prime}}
$$

$$
\text { Equating }(1) \text { and }(2), \frac{C B}{C B^{\prime}}=\frac{P B}{P B^{\prime}}
$$

But all distances along the Principal axis should be measured from the pole of the mirror.

$$
\therefore \quad \frac{P B-P C}{P C-P B^{\prime}}=\frac{P B}{P B^{\prime}}
$$

using new cartesian sign convention,

$$
P B(\text { object distance } \theta)=-u ; P F(\text { focal length })=-f
$$

$P B^{\prime}($ Image distance $)=-V ; P C($ radomes af connate 0$)=-R$

$$
\begin{aligned}
& \frac{-u+R}{-R+v}=\frac{-u}{-v}=\frac{u}{v} \\
& -u v+v R=-u R+u v \text { or } v R+u R=2 u v \\
& u R+v R=2 u v
\end{aligned}
$$

Dividing by $u v R, \frac{1}{u}+\frac{1}{v}=\frac{2}{R}$
But $R=2 f$

$$
v-\frac{1}{v}=\frac{2}{2 f} \text { or } \frac{1}{u}+\frac{1}{v}=\frac{1}{f w w}
$$

Q The radice of cavature of a concove n is 30 cm . Find out where.the ofject ho be ploced so that Image in five time? magrified.
8019

$$
\begin{aligned}
& f=15 \mathrm{~cm} \\
& r=? \\
& H_{i}=5 H \\
& \frac{-r}{4}=\frac{-h_{1}}{h_{0}}
\end{aligned}
$$

If Image è tirtual

$$
\begin{gathered}
m=s \\
R=-30 \\
f=-1 s \\
m=s=\frac{-1 s}{-1 s} \\
u=-12 \mathrm{~cm}
\end{gathered}
$$

If Image in real

$m=-5$
$R=-30$
$f=-15$
$m=-s=\frac{-1 s}{-1 s-4}$
$u=-18 \mathrm{~cm}$

(st Choice

Thite figure showin the first reffection istaking place shrsugh concare mirrer ons and replection through comven mirrer Pind out the haight af Dmage formes after Lwo reflee tor .
14

$$
\begin{aligned}
& 4=-90 \mathrm{~cm} \\
& f=-20 \mathrm{~cm} \\
& m 2 \frac{f}{f-4}=\frac{-20}{-20-(-30)}=-2=\frac{-v}{4}=\frac{-v}{-30} \\
& V=-60 \mathrm{~cm}
\end{aligned}
$$

Fer reflection through conven mirra:

$$
\begin{aligned}
& u=-40 \mathrm{~cm} \\
& f=30 \mathrm{~m} \\
& m_{2} \geq \frac{f}{f-u}=\frac{30}{70-(-40)}=\frac{3}{7}=\frac{-v}{u}=\frac{-1}{4} \\
& v=\frac{120}{7} \mathrm{~cm} \quad \frac{H_{g}}{-6}=\frac{3}{7} \\
& H I=\frac{-18}{7} \mathrm{~mm}
\end{aligned}
$$

Note.

$$
m_{\text {net }}=m_{1} \times m_{2} \times m_{3} \times \ldots
$$

Proef- Br tecarding to above ousto:-

$$
\begin{aligned}
m_{1} & =-2 \\
m_{2} & =\frac{3}{7} \\
m_{\text {net }} & =\frac{-6}{7}
\end{aligned}
$$

$$
=\frac{-48-6}{7} \Rightarrow \operatorname{lng}_{\text {www.GRA }}^{7} \frac{2-18}{7} \mathrm{~cm}
$$

WWW. GREABESEETTER.COM

In b/w the two mimer on oft id has to be kept on the principal anis find out it's position of the Image formed 80 thatingeg after af two reflector, It t through concave ont Int through convex is two fires magnified.

$$
\begin{aligned}
& u=9 . \\
& f=-30 \mathrm{~cm} \\
& m+\frac{f}{\sqrt{4}-w}{ }^{2} \quad \frac{770}{75} \neq f
\end{aligned}
$$

$$
m 2 \frac{f}{f-x}=\frac{-30}{-70-x}
$$

$$
=\frac{30}{30+2}
$$

$-V$
48)

A concave mover forme the Areal image of the screen haring size thrice that af obj

Now the office and sure screen one p rim until the Image size become that of abject. out focal length of the miser os well on. of seven.
Sol"

$$
\begin{align*}
& m=-3=-\frac{v}{4}=-\left[\frac{v}{-x}\right] \\
& v=-3 x \\
& u=-(x+6) \\
& m=-2=\frac{f}{f-4} \\
& -2=\frac{-f}{-f-[-x-6]}=\frac{-f}{-f+x+6} \tag{-1}\\
& -3=\frac{-f}{-f-(-x)}=-3=\frac{-f}{-f+x} \tag{2}\\
& f=36 \text { ss sn प हले ही, दिt किये है } \\
& \text { shifting z Jbar }
\end{align*}
$$

ET.)

Taking P_{1} as sign find out x and $+y$-cording. af the image which in formed after two two reflector (first through concave and and through convert.)
$80 / 4$ Fि concern कोष口.

$$
\begin{aligned}
& \text { Por conven - } \\
& 4=10 \mathrm{~cm} \\
& f=20 \mathrm{~cm} \\
& m_{2}=\frac{20}{20-10}=2=\frac{H_{2}}{-8} \Rightarrow 1 A_{I}=-16 \mathrm{~mm} \\
& 2=\frac{-V}{10} \Rightarrow V=-20 \mathrm{~cm} \\
& (30 \mathrm{~cm},-14 \mathrm{~mm})
\end{aligned}
$$

WWW.GRADESETTER.COM
(13i) Image formaton bythespharical mirori's object en virtual \Rightarrow

1) If misrer is concare \Rightarrow

For the virtual object concave miver alwergs fothe real Image which isformed s/00 "focus and
2.) De mirrer is conver \rightarrow (when object lying $\begin{gathered}\text { pole and foc }\end{gathered}$

Th the ristual oftect in lying bf then it's reauw. ARAESEITER.com

 -

If the virteal object is lying b/w focus and the Dnfinety pres Image form will always de visteral

- इस में concare की ससेपाँच core होगै।
\quad vice) \rightarrow Solve shect
concert
ingal Point \Rightarrow or (Geatenal apisocech) to solve the Question \Rightarrow
संद obicet rirtual हो और इस conett में भापको कीई यA एक momer (जैसी concave मा conve या बनने वाला Dmoge का fize, nathe popil
पए तो आप इस cose में miser तो आप दूस cose में mishor folhe कर ले किसज 7 I इस प्रका अ उतर ZWWWW.GRADESETTER.COM

WWW.GRADESETTER.COM

af Real In miene

- virteal Imageal virtheal object.

Reallinageco wrival obsed

Db -the magne
principal abject in lying parable (or along) The Image anis the the the ratio ald length ab called as longiticidunal length of the abject in so, midunal magnification

$$
m=\frac{\text { length of Image }}{\text { length of object }}=\frac{l_{i}}{l_{0}}
$$

5..) A thin rod of length $\mathrm{f} / 3$ in lying along the "pricipal axis's of a con cave miner of focal length "f" fo that the Image which in real ans elongates Jus t touches the rod. Find the longitudinal. magnification

Fer \mathbb{B} :

$$
\begin{aligned}
& u=\frac{-5 f}{3} \\
& f=-f \\
& f=\frac{-1}{f}=\frac{-1}{5 f} \Rightarrow v=\frac{-5 f}{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { length of Image }=\frac{s f}{2}-2 f=\frac{f}{3} \\
& \text { object }=\frac{f}{3}
\end{aligned}
$$

leogth of of object $=\frac{f}{3}$

$$
\begin{aligned}
\text { Congituidital mognification } & =\frac{5 / 2}{5 / 3} \\
& =\frac{3}{2}
\end{aligned}
$$

(x.) A "U"shaped wire is ploced before a concare mirror having radres of conveture " $20 \mathrm{~cm}^{\prime}$ find out rotal longth af the Image.

$$
\begin{aligned}
& f=\frac{-20}{2}=-10 \\
& u=30 \mathrm{~cm} \\
& \frac{1}{v} z \frac{1}{-10}+\frac{1}{20} \Rightarrow-3+1 \\
& 3 / 0
\end{aligned}
$$

$$
2-15
$$

$$
\frac{h_{i}}{h_{0}}=p=\frac{r}{4}
$$

$$
\text { hii } / \frac{11}{-30} \times 40
$$

Here are are assuming the pole of sp miser as the origin af corardinate all the distances are defined with pole.

Along x-axis \Rightarrow

$$
\begin{aligned}
& \frac{1}{x_{\text {s }}}+\frac{1}{x_{o m}}=\frac{1}{f} \\
& \text { sibferonvate wire times } \\
& \Rightarrow \frac{1}{x_{\operatorname{m}}^{2}} \frac{d X_{D m}}{d t}-\frac{1}{x_{m}^{2}} \frac{d X_{o m}}{d t}=0 \\
& \Rightarrow \vec{V}_{\operatorname{man}(n)}=-\left(\frac{X_{I_{m}}}{X_{o m}}\right)^{2} \vec{V}_{\operatorname{Orm}(n)} \\
& \vec{V}_{\operatorname{Im}(x)}=-m^{2} \vec{V}_{o m(x)}
\end{aligned}
$$

WWW.GRADESETTER.COM
(st Choice

find the vel.af Imege at the Instand
Shown

$$
\begin{aligned}
& \frac{d x}{d t}=.10 \\
& \frac{d y}{d t}=2 \\
& u=-10
\end{aligned}
$$

$$
f=10
$$

$\frac{1}{x^{2}} 10+\frac{1}{y x} x=1$
$m=\frac{10}{10-(-10)}=\frac{1}{2}$
$V_{T}-2=-\left(\frac{1}{4}\right)(10-2)$

$$
V_{1}-2=-2
$$

$$
v_{9}=\operatorname{ten}_{0}
$$

WWW.GRADESETTER.COM
vel. af Image along y-axis \rightarrow

$$
m=\frac{x_{\text {sm }}}{x_{o m}}=\frac{\frac{y-a x i s}{f-u}}{\frac{f}{x}}
$$

$$
\hat{I}_{m}=\left(\frac{f}{f-4}\right)_{\text {om }}^{y^{\prime}}
$$

$$
\frac{d y_{m m}}{d t}=\left(\frac{f}{f-u}\right) \frac{d y_{0 m}}{d t}+\operatorname{yom} \frac{d}{d t}\left(\frac{f}{f-u}\right.
$$

$$
\vec{V}_{V_{m}(y)}=m \vec{V}_{o m(y)}+\frac{y_{0 m} f}{(f-u)^{2}}\left(\frac{d u}{d t}\right)
$$

Here
$V_{\text {Im(y) }} \Rightarrow$ veliaf Dmagewrud minor in $y-a$
Die \rightarrow If object in lying on Principal anis.

WWW.GRADESETTER.COM
(st Choice)

$$
\vec{V}_{g m(y)}=m \vec{V}_{0 m(y)}
$$

雨

Find out the relocity of Dmage.
a Along y-axis \rightarrow
Here objcit lyng on the Principos aris sa

$$
V_{O M}=0
$$

80,

$$
\begin{aligned}
& \vec{V}_{\operatorname{Im}(y)}=m \vec{V}_{0 m(y)} \\
& m=\frac{f}{f-4}=\frac{-20}{-20+30}=\frac{-20}{\pi 0}=-2
\end{aligned}
$$

Nore

WWW.GRADESETTER.COM
c. Mong x-an $x \Rightarrow$ ruses
$\vec{V}_{\operatorname{Im}(x)}=-m^{2} \vec{V}_{\operatorname{Om}(x)}$

$\left(\vec{V}_{2}-(-2)\right)=-(4)[9-(-2)]$

$$
V_{1}+2=-44
$$

$\vec{V}_{B}=-46$ Along n-axis
80, Ansi $-46 \hat{i}-24 \hat{\jmath}$
D)

$g \rightarrow A l c c^{\prime \prime}$ dee to

- A particle in relecened loom rent from p d out the in at the height $f / 2$ from the out the time aft 1 veliafs mandes z end ab
man: velid the fecal in longth of concaus (lst Choil monif in the ig\% is olch. Alue to gavity nirer. and
827^{a}

$$
\begin{gathered}
u=-7 / a \\
\frac{d x}{d t}=10 \mathrm{~m} / \mathrm{s} \\
\text { Thitial vel }=0
\end{gathered}
$$

t 2 ? , vel ' is monimeum $=$?

$$
\vec{V}_{V_{m}}+m^{2} \vec{V}_{o m}
$$

$m 2 \frac{f}{f-u}=\frac{-f}{\left.-f-\left[-\frac{1}{a}-\frac{1}{2} g t^{2}\right]\right]}$

$$
m>\frac{-f}{-f+\frac{f}{2}-\frac{1}{2} g t^{2}}
$$

$$
m=\frac{2 f}{V_{t}^{c}+g_{t}{ }^{2}}
$$

c) Horg x-axisa yoses
$\vec{V}_{\operatorname{I} m(y)}=-m^{2} \vec{V}_{0 m(x)}$

$$
\begin{gathered}
\left(\vec{V}_{D}-(-2)\right)=-(4)[9-(-2)] \\
V_{D}+2=-44 \\
\vec{V}_{B}=-46 \text { Along n-ani }
\end{gathered}
$$

80, Ands $-46 \hat{i}-24 \hat{j}$
5

A porticle in releaned loom rent "A". Which is at the hoight $f / 2$ out the time aftes

WWW.GRADESETTER.COM
man: veliaf the irmaglength af concave mirer. and "g' is olen Alue to gravity f is the frecal is oln

82

$$
\begin{gathered}
u=-7 / 2 \\
\frac{d x}{d t}=10 \mathrm{~m} / \mathrm{s} \\
\text { Initial vel }=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Thitial vel }=0 \\
& t=\text { ? }
\end{aligned}
$$

$$
m=\underset{-f-\mu}{-f}=
$$

$$
\vec{V}_{V_{m}}+m^{2} \vec{V}_{a m}
$$

$$
m>\frac{-f}{-f+\frac{f}{2}-\frac{1}{2} g t^{2}}
$$

$$
\begin{aligned}
& \quad V=-\left[\frac{2 f}{d+g t^{2}}\right]^{2} g t=-\left[\frac{4 f^{2} g t}{(f+g)^{2}}\right] \\
& \quad \frac{d}{d t}\left(V_{f}\right)=0 \\
& \because \frac{d}{d t}\left(\frac{a}{-b}\right)=b \frac{d}{d t}(a)-a \frac{d}{d t}(-b) \\
& \Rightarrow\left(f^{2}+g^{2} t^{4}+2 f g t^{2}\right) 4 f^{2} g-\left(4 f^{2} g t\right)\left(4 g^{2} t^{3}+4 f g t\right. \\
& \Rightarrow \\
& \Rightarrow 4 f^{4} g+4 f^{2} g^{3} t^{4}+8 f^{3} g^{2} t^{2}-16 f^{2} g^{3} t^{4}-16 f^{3} g t^{2} t \\
& \Rightarrow \\
& \Rightarrow 4 f^{2} g-12 f^{2} g^{3} t^{4}-8 f^{3} g^{2} t^{2}=0 \\
& \Rightarrow f^{2}-3 g^{2} t^{4}-2 f g t^{2}=0 \\
& \Rightarrow 3 g^{2} t^{4}+2 f g t^{2}-f^{2}=0 \\
& \Rightarrow 1 g^{2} x^{2}+2 f g x-f^{2}=0 \\
& \Rightarrow
\end{aligned}
$$

$$
x=-2 f g \pm \sqrt{4 f^{2} g^{2}+180^{2}}
$$

\qquad

$$
\begin{aligned}
& t^{2}=\frac{48 g-2 f g}{6 g^{2}}=\frac{2 g / f}{6 g 2} \\
& t=\sqrt{\frac{\sqrt{2 f}}{6} g} \\
& t=\sqrt{\frac{2 f}{6 g}}
\end{aligned}
$$

then the value of "t "a putin

$$
v_{1}=
$$

- Cefo゙幺:...
to ancuthen tho light in goining from one mediem to ancothen medicem then this pheromenon is calted as repraction.

Note:-

$$
f(x
$$

1) Diening the refraction of light the frequeney Loes not Change whereas the speed and coavelergll accosdingly change as per the given enprasion.

$$
f=\frac{\gamma}{\lambda}=\text { Constant }
$$

2.)

Refraction in nat 100% it takes ploce wo some reflection also.

B Refrective Sheie of a medicim \Rightarrow
It is defand è two diffeent way'!Absoluter refrectine indesh \Rightarrow af a medilem
(st Choice)

$$
\begin{array}{r}
\mu=\frac{\text { speed of light in air/vocourn }}{\text { speed of lightin in-medium }}=\frac{\mathrm{c}}{v} \\
(\because c>v)
\end{array}
$$

$$
(\because c>v)
$$

Absolute rofrecthe Index of any medion ingreate then one (becaure ic in reat then V)
some Standart rosulti-

$$
\begin{aligned}
& \mu_{\text {coates }}=\frac{4}{3} \\
& \mu_{\text {glars }}=\frac{3}{2}
\end{aligned}
$$

Relatre refrectre Index \Rightarrow
This refrective Inden of a medium is defind w.r.t any other mediem excepet air/rocien

$$
\left.{ }_{B} \mu_{A}=\frac{\mu_{A}}{l_{B}}=\frac{C / V_{A}}{C / V_{B}}=\frac{V_{B}}{V_{A}}=\frac{\lambda_{B}}{\lambda_{A}}\right\}
$$

$$
\left\{_{A} \mu_{B}=\frac{l_{D}}{\mu_{A}}=\frac{1}{B l_{A}}\right\}
$$

The Relatie refrectinen indon of a

WWW.GRADESETTER.COM
(st Chotes
atg3-

$$
g l_{\omega}=\frac{\mu_{\omega}}{l_{g}}=\frac{4 / 7}{7 / 2}=\frac{8}{g}<1
$$

\pm Law of Pefraction \rightarrow

Hene
$\mathrm{Ci}=$ Angle of Trideree
\angle Lr $=$ Angle of reproction.

1) Ineident ray, Normal and Refroctes ray a lie in the same plane
2.) Snell's lawe \Rightarrow

Thei lave sajis the vatio of
ongle af Indiderce to the sine af angle of regoction is constank.

$$
\begin{aligned}
& \frac{\sin (\dot{\theta})}{\sin (c)}=\text { Constant } \\
& \Rightarrow \text { modified farm } \Rightarrow
\end{aligned}
$$

WWW.GRADESETTER.COM
(st Choice)

$$
\frac{\mu_{1} \sin i=\cdots \mu_{2} \sin r}{\substack{v}}
$$

The can also be written ar -

$$
\frac{\sin i}{\sin r}=\frac{l_{1}}{l_{1}}+l_{2}
$$

पर1) The bocentry af a medium in lying in the x-yplare a ray of light is maiden in the region
$z \geqslant 0$ having $\mu=\sqrt{2}$ ans the refroctes ray in going in the region
$z \leq 0$ having ll= $\sqrt{3}$
given by
The t ac Incident say in ceiling the direction $6 \sqrt{7} i+8 \sqrt{3} j-10 \hat{k}$. Find out the unit vector vector along the direction of refrocted ray.

Unit vector along the direction of Incident ray!

$$
\Rightarrow \frac{6 \sqrt{3} j+8 \sqrt{3} i-10 \hat{k}}{\sqrt{10 \delta^{7}+192+100}}=\frac{6 \sqrt{3} i+88 \sqrt{3} \jmath^{\hat{i}}}{20}
$$

Unit vector along Normal: $\rightarrow \hat{k}$

$$
\Rightarrow\left[\frac{6 \sqrt{3} \hat{l}+8 \sqrt{2} \hat{j}-10 \hat{k}}{20}\right] \cdot \hat{k}=\cos \theta
$$

$$
\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=120^{\circ}
$$

$$
80 I=60
$$

WWW.GRADESETTER.COM
(s choice)

$$
\begin{aligned}
& \Rightarrow \sqrt{2}\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3} \sin r \\
& \Rightarrow \sin r=\frac{1}{\sqrt{2}} \\
& \Rightarrow \operatorname{As}=45^{\circ} \\
& \Rightarrow \text { ray will }
\end{aligned}
$$

The refrocted ray will be along the director

$$
6 \sqrt{9} \hat{\jmath}+8 \sqrt{ }{ }^{3}+z \hat{k}
$$

unit vector along refracted rays

$$
\frac{6 \sqrt{7} \hat{i}+8 \sqrt{3} \hat{y}+z \hat{k}}{\sqrt{300+z^{2}}}
$$

Unit vector along docinward normal $\rightarrow-\hat{k}$

$$
\Rightarrow\left[\frac{6 \sqrt{3} \hat{i}+8 \sqrt{3} \hat{\jmath}+z k}{\sqrt{300+z^{2}}}\right] \cdot\left[\begin{array}{r}
\hat{k}
\end{array}\right]=\frac{1}{\sqrt{2}}
$$

$$
\begin{aligned}
& \Rightarrow \frac{-z}{\sqrt{300+z^{2}}}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \quad z^{2}=300 \\
& z=-10 \sqrt{3}
\end{aligned}
$$

Unit recites dong defrourfogradesEDTER.com

$$
=\frac{1}{10 \sqrt{6}}[6 \sqrt{3} \hat{\imath}+8 \sqrt{3} \hat{\jmath}-10 \sqrt{3} \hat{k}]
$$

Alt \rightarrow

$\hat{e}_{1}=$ unit vecter olorg Incident ray
$n=$ unit recter alorg Normal [from ins mediom towords Hetmed
$e_{2}=$ un't vectar along refrocted Ray.

$$
\begin{gathered}
\mu_{1} \operatorname{snj}=\mu_{2} \sin x \\
\Rightarrow \mu_{1}\left[\hat{e_{1}} \times \hat{n}\right]=\mu_{2}\left[\hat{e_{2}} \times \vec{n}\right]
\end{gathered}
$$

* Rare - Tron

$$
\begin{aligned}
l_{R} \sin a & =l_{D} \sin a \\
\frac{\sin i}{\sin r} & =\frac{l_{D}}{I_{R}}
\end{aligned}
$$

When the ray of light we form rarest whereas if the say af light goon from dowse $\sum_{i 0}$ rare medium then it bend's away from the normal造
(1). the affect is denser medium and seen from rare medium \Rightarrow (definelfor:

 Nowe
Or Neganiats raybto
from snet's law -

$$
\mu \operatorname{losin} i=\mu_{R} \sin x
$$

for Parasial Rays

$$
\begin{aligned}
& \mu_{D} \tan i \approx \mu_{R}\left[\frac{A B}{A O}\right]=\mu_{R}\left[\frac{A B}{A D}\right]
\end{aligned}
$$

$$
\Rightarrow \frac{\mu_{P}}{\mu_{R}}=\frac{A O}{A T}
$$

Acylintrical buccet in having total height "H" fint out upto which height water having refrective Iden ll has to bs filled so that it appeai's to be $\frac{1}{2}$ emf

Real death of lone $=h$
Tpo. Lepth of bore from surfore of warte $\Rightarrow \frac{h}{l}$

$$
\begin{array}{r}
\frac{h}{\mu}=H-h \Rightarrow h\left(\frac{1}{u}+1\right)=1+ \\
80^{\prime}\left[h=\frac{\mu H}{\mu+1}\right] \text { hy. }
\end{array}
$$

2.) If the afject is in raren medium and it is Feen from densen mediom \Rightarrow CDefinedefor smallang
 $\operatorname{Pane}\left(l \mu_{R}\right.$ Denserf.

Prom fnell's lave

$$
\mu_{R} \sin i^{\prime}={l_{D}}_{\sin }
$$

Per Paranil saysis
(st choice

$$
\begin{aligned}
& \quad \mu_{R}\left[\frac{A B}{A D}\right]=\mu_{D}\left[\frac{A P}{A D}\right] \\
& \Rightarrow \frac{\mu_{D}}{\mu_{R}}=\frac{A D}{A D} \\
& \\
& \left.\frac{\text { App. height }}{\text { Real height }}=\frac{\mu_{D}}{\mu_{R}}=R \mu_{D}\right\}
\end{aligned}
$$

er.com d on
Real desth ant Anparemo dente
50,

$$
\int_{1} \int_{1} \int_{1}^{2 r}
$$

Calculate:-
a) sepeation af bish on seen by bird througt
(b) reprackon senaton bird on Fien by figh throu refrocton.
8014
(a) Real depth $=\frac{H}{2}$

$$
\text { APP. depth }=\frac{1 t}{2 d t}
$$

$$
\text { separation }=\operatorname{lt}+\frac{H}{2 \mu}
$$

b) Aps. Height from surfoce $=1 \mathrm{H}$

$$
\text { Seperation }=\frac{1}{2}+l l H
$$

Calculate:-
a) sep. af In age of fish through reflection as seen by biro
b) serration of Image af bird. Through reflection as seen by fish.

Tu a)

WWW.GRADESETTER.COM
b)

$U(H)+H$

$$
\begin{aligned}
& \mu \geq \frac{y}{1 t} \\
& y>\mu H \\
& \text { seperation } \operatorname{luH}+H+t
\end{aligned}
$$

Problom's bosed on sosndl's dane ure forloi' angle
Ththe given figue find out outwhic: height wate having refrectne Inden A? tobe filled so that 5 point "p" becomes tothe person.

0

from snell's lave
(Here angle ei

$$
\begin{aligned}
& \frac{4}{3} \sin i=\sin 45^{\circ}=\frac{1}{\sqrt{2}} \\
& \sin i=\frac{3}{4 \sqrt{2}}
\end{aligned}
$$

$$
\text { feni }=\frac{9}{\sqrt{20}}
$$

WWW.GRADESETTER.COM

$$
\text { Hewaten } 5 \frac{4}{3} \text { 2m|ces }
$$

Rader afocring 75 cm
find out the radivs af the shakow of the riong which in fermed on the Billing if

From snell's lawe

$$
\frac{4}{3} \sin 37^{\circ}=\sin \alpha
$$

al on velocition in the cants af recfrection \Rightarrow

Calculater -
a) wet af bigh as obsenet by bird, b) vel.af birt as absened by bish.

801
a) Per stationary obseria.

$$
\begin{aligned}
& \beta=x+\frac{y}{l l} \\
& \frac{d \beta}{d t}=\frac{d x}{d t}+\frac{3}{4} \cdot \frac{d y}{d t} \\
& \frac{d s}{d t}=\theta+\frac{3}{4}(-q)=\frac{-3}{2} \\
& \text { writ bid } \\
& V_{\text {bid }} d=\frac{-3}{q}-3
\end{aligned}
$$

WWW.GRADESETTER.COM

$$
\begin{aligned}
\text { (1nn101) } \\
\begin{aligned}
\frac{d 8}{d t} & =\left(10^{-2}\right)+\frac{3}{4}(-6)-\frac{3}{4}\left(10^{-2}\right) \\
& =0.01-4.5-\frac{0.03}{4}
\end{aligned} .
\end{aligned}
$$

(1) chnole
methar(indl-

$$
\begin{aligned}
& \rho=x+\frac{z}{\mu} \\
& \frac{d s}{d t}=\frac{d x}{d t}+\frac{3}{4}\left[\frac{d z}{d t}\right] \\
& \frac{d s}{d t}=\left(10^{-2}\right)-\frac{3}{4}\left[10^{2}+6\right]
\end{aligned}
$$

Problem bose on glans slab:s
相

find out distance of final Image from A,

$$
\begin{aligned}
& \frac{10}{\text { app }}=\frac{7 / 2}{1} \\
& \text { app } 2 / \frac{1002}{3} \\
& \text { app } \frac{20}{3}=6+6
\end{aligned}
$$

per fast refrocke

$$
l_{12} J_{2}+\frac{A O^{\prime}}{A 0}=\frac{A O^{\prime}}{10}
$$

$$
H_{0}^{1}=1 \text { Sclumuwam UER.com }
$$

(ste Choice

$$
\begin{gathered}
\mu=\frac{3}{9}=\frac{A 0^{\prime \prime}}{A 0^{\prime \prime \prime}} \cdot \frac{2 \mathrm{~s}}{A O^{\prime \prime \prime}} \\
A 0^{\prime \prime \prime}=\frac{\operatorname{socm}}{5}
\end{gathered}
$$

62. Ther in a Iten elob reat sirfore of distance of Correal surfore is 4 cm . Fins oet thickners of the glows slab.
<

Given the! \rightarrow

$$
\begin{gathered}
0^{\prime \prime} 0^{\prime \prime \prime}=4 \mathrm{~cm} \\
\operatorname{lec}+3 t-4 x-4=4 \\
2 t=4 \\
t_{2}=2
\end{gathered}
$$

 constant ratel". The volume of thocliquid
contains remain's constant which is "Bi' Find oct the apparent vel.cof the office Seen by the observe when firexadilenaf the dy os "应".
(st Chotec)

$$
\begin{aligned}
& \pi^{2} \frac{d h}{d t}=-2 \pi h r \frac{d r}{d r} \\
& \frac{d h}{d t}=-\frac{2 h}{r} \frac{d r}{d t}=\frac{2 k \cdot h}{r}
\end{aligned}
$$

seprection of o"os geen by whered.

$$
\begin{aligned}
\beta & =L-h_{1}+\frac{h}{d} \\
\frac{d s}{d t} & =\frac{d \psi}{d t}+\left(\frac{1-\mu}{d r}\right) \frac{d h}{d t} \\
\frac{d s}{d t} & =\left(\frac{1-\mu}{d H}\right) \frac{q k c h}{\partial}
\end{aligned}
$$

$$
\text { pect } h=\frac{V}{M r^{2}}
$$

$$
\frac{d \pi}{d t}=
$$

Find out at which angle the vel. af By rd will be appeocl (with hanzoral) by the oft.

$$
\begin{aligned}
& \rho=y_{2}+\mu y_{1} \\
& \frac{d \rho}{d t}=\frac{d y_{2}}{d t}+\frac{4}{3} \frac{d y_{1}}{d t}
\end{aligned}
$$

$$
\Rightarrow-5+\frac{4}{3}(6)
$$

How to solne the probbem besed on vos Refreetive Inden \Rightarrow

(i) If $\mu=f(x)$

Slopat β,
\qquad

WWW.GRADESETTER.COM
(lachnole

1) Arayble light $\left(j=90^{\circ}{ }^{\circ}\right.$ on a ma regular slabing thedinc frickere im

$$
\begin{aligned}
& \text { Truidence } \\
& \mu=f(y)=\sqrt{k y^{3 / 2}+11} \\
& \text { whe R, constand }=1
\end{aligned}
$$

a) obtain the relation b/w slope and angle af Incistance (o) Obtain the eq" af trajeetery.

$$
\frac{d y}{d x}=\cot d
$$

$$
l \operatorname{ll} \sin \theta=\cos \tan \theta
$$

$\underset{\sim}{d x} \rightarrow$ cutd (i)
$1 \geq \operatorname{Lry}^{\frac{3}{2}}$ Sind www.gRADESETTER.Com

$$
\int_{\text {cati }}=\sqrt{\mathrm{Ky}} 3 / 4=y^{3 / 4} \mid \rightarrow n^{3}
$$

subshitate value of coti in eq(1)

$$
\begin{aligned}
& \frac{d y}{d x}=y^{3 / 4} \\
& \int_{0}^{y} \frac{d y}{y^{3 / 4}}=\int_{0}^{x} d x
\end{aligned}
$$

$$
\begin{aligned}
& 4 y^{1 / 4}=x \\
& y \geq \frac{x^{4}}{256}
\end{aligned}
$$

Double Refection through glass slat

e: \rightarrow Angle of erogence

$$
\begin{gathered}
\text { At it suffocer - } \\
\qquad \begin{array}{c}
\text { at } \quad \text { int info } \\
\sin i=\mu \sin r
\end{array} \\
\mu \sin r=\sin (e) \\
\angle i=\angle C
\end{gathered}
$$

1) For a glass slab of the ne is same medium one the sites. then the emergent ray will be po incident Jay

WWW.GRADESETTER.COM
(ssthoice) slab \Rightarrow
a) For convensing rays:=

Let $B O=x$
Ter ust refroction

$$
\begin{aligned}
& \operatorname{ll}=\frac{A O^{\prime}}{1 A O^{\prime}} \\
\Rightarrow A O^{\prime} & =M(A 0) \quad(1)
\end{aligned}
$$

fer $2 n d$ repraction

$$
A=B O^{10}
$$

WWW.GRADESETTER.COM

$$
\begin{align*}
& B 0^{\prime \prime}=\frac{\mu(t+x)-t}{\mu} \\
& T 0^{\prime \prime}=t+x-\frac{t}{\mu} \tag{2}
\end{align*}
$$

Normal shibt $=00^{\prime \prime}$

$$
\begin{aligned}
& \Rightarrow B 0^{\prime \prime}-B 0 \\
& \Rightarrow t+x-\frac{t}{l}-x \\
\text { Normal } & \Rightarrow t\left(1-\frac{1}{u}\right)
\end{aligned}
$$

(b) Fer Divossing says=s

WWW.GRADESETTER.COM
(sschorice

75

$$
\leftarrow \quad 32 \mathrm{~cm}
$$

In the figure shoom find out natere and position ef final Dimage formed if
Aif $x=5 \mathrm{~cm}$
(B) if $x=20 \mathrm{~cm}$
A) Normal shifst $=2 \mathrm{~cm}$
for concave me'r.

$$
\begin{aligned}
& u=-50 \mathrm{~cm} \\
& f=-10 \mathrm{~cm} \\
& v=-1 \mathrm{sam}
\end{aligned}
$$

B)

Final Image will be virtual and formed at 14 cm form pole towonts left

Fe, 9
A glean slob of thickness som ans $\mu=\frac{3}{2}$ is in front of a concave miser having readies of convature 40 cm . How far from the mirror a small affect be ploeed so that its tres co-Inciten with the abitit.

(lst Choice)
Fob concave mind

$$
\begin{aligned}
& \mu=-\left(x-\frac{s}{3}\right) \\
& f=-20 \mathrm{~cm} \\
& v=-\left(x-\frac{s}{3}\right)
\end{aligned}
$$

$\stackrel{\rightharpoonup}{20}$

Inthe figue shown find out the lengt af ghadrove af the pole wheh is formeotert the boseaf the fole.

Sa. Dengthat hadiew $=181$. Sch

Latal shiff due vo glans slab \Rightarrow

$$
\begin{aligned}
& \text { lateral shift }=B C \\
& \text { In } \triangle A T D \\
& \cos \gamma=\frac{A D}{A B} \\
& \Rightarrow A B=\frac{A D}{\cos \gamma}=\frac{t}{\cos \gamma} \\
& \text { (i) } \\
& \text { in } \triangle A B C \\
& \sin (i-r)=\frac{B C}{A B} \\
& \Rightarrow B \cdot C=(A T) \sin \left(i^{\circ}-\gamma\right) \\
& \text { It defrends on:- } \\
& \text { 1) Thictinos } \\
& \text { i1) Anglo of } \\
& \text { Dinbidane } \\
& \text { ii) Refreetue } \\
& \text { infa }
\end{aligned}
$$

(1scholice
Refraction though multrole layeris - Nefraction thoog
lets -

Por int refracto.

$$
\begin{align*}
& \frac{\mu_{2}}{\mu_{1}}=\frac{B O}{B O^{3}}=\frac{t_{2}}{B O^{\prime}} \\
& \Rightarrow B O^{\prime}=\frac{t_{2} \mu_{1}}{\mu_{2}} \tag{i}
\end{align*}
$$

For 2 nd rebaction:-

$$
M_{1}=\frac{A O^{\prime}}{A O^{11}}=\frac{A B+B O^{\prime}}{A O^{\prime \prime}}
$$

SApp. depth from top scerface1-

$$
\left.\rightarrow \frac{t_{1}}{\mu_{1}}+\frac{t_{2}}{t_{2}}+\frac{t_{3}}{d_{3}}+\cdots \cdots \cdot \cdot\right\}
$$

Wample)
a)
b)

Find out Dosition af "0" as seon from 1
a) App depth fron Nop surfore

$$
\Delta \frac{1.2}{1.2}+\frac{10]}{1.3}+\frac{1.4}{1.4}
$$

(st Choice)
b) App depth from for info

$$
\Rightarrow \frac{1.4}{1.4}+\frac{2}{1}+\frac{1.3}{1.3}+\frac{2}{1}+\frac{1.2}{1.2}+\frac{2}{1}
$$

$\Rightarrow 9 \mathrm{~cm}$ from top sunfoo.
method \Rightarrow
(total normal shifts -

$$
\begin{aligned}
& \text { Total normal shifts } \\
& \Rightarrow 1.4\left[1-\frac{1}{1.4}\right]+1.3\left[1-\frac{1}{1.3}\right]+1.2[1= \\
& \Rightarrow 0.9 \mathrm{~mm}
\end{aligned}
$$

Total fops depth from top furfor

$$
\begin{gathered}
\Rightarrow 9.9-0.9 \\
29 \mathrm{~cm}
\end{gathered}
$$

WWW.GRADESETTER.COM

Internal
Reflection or (TIR)

Pefinition \Rightarrow
If a ray af light
is Incident from
densento rorer medium and angl of
Incidence ingreater than critical angli bockin the same mediem. Thi pher. ei calles as Hotal Dntanal replection (IR).
(*) Critical angl \Rightarrow
Criticel angle is the minimuem value. angle af Dneideree after which
tanc place ar ue sean say ef arà light ingoing from densen to reren medi them it es the value of. angle afo Inciden pording to whinl ingte afo repor
(sschorice
Fromm snell's laver-

$$
i_{C}=\sin ^{-1}\left[\frac{\mu_{R}}{\mu_{D}}\right]=\sin ^{-1}\left[\frac{1}{\mu_{D}}\right]
$$

Inside the water a sore af o light in kent at a depth af o "h "from thererfer Find out the Area on the forferee af arever through which light from the source can be ransmited.

WWW.GRADESETTER.COM

$$
R=\frac{H}{\sqrt{\mu^{2}-1}}
$$

80, Aree af circf

$$
\begin{aligned}
\Rightarrow & \pi R^{2} \\
& \frac{\pi H^{2}}{\mu^{2}-1}
\end{aligned}
$$

$$
\frac{268}{\frac{(x+3}{(x) N 0}=7}
$$

$$
i>i_{e}
$$

$\sin i>\sin i c$

WWW.GRADESETTER.com
(lach chare
家 8

Per Tir takes Place

$$
\begin{align*}
& \Rightarrow \quad 90-r>l^{2} \\
& \Rightarrow \quad \sin (90-r)>\sin 9^{4} \\
& \Rightarrow \quad \cos \gamma>\frac{1}{\mu} \tag{1}
\end{align*}
$$

at Int t sinfore

$$
\begin{aligned}
& \sin 90^{\circ}=\mu \sin \ell \\
& \sin \alpha=\frac{1}{\mu} \\
& \text { www.GRADESEITER.com }
\end{aligned}
$$

WWW.GRADESETTER.COM

From (2) and (1) (IV)

$$
\begin{gathered}
\sqrt{1-\frac{1}{u^{2}}}>\frac{1}{l} \\
\sqrt{1+\frac{\pi}{a^{2}} l^{2} \sqrt{2}}
\end{gathered}
$$

2.) Trilliance of diamons \rightarrow

The value of eritical angle for the dianond in app. 24° ans the cutting of the drimons in done in sucha way whect the soy of light falling on? the surfoce of dicemond in mare than 24° to TIR takes ploce at the multiple suffe
3.) mirrage \Rightarrow

यदि शेखे \rightarrow porrage गारी के दिन मर कर गब्ध गमा

Dn the diffeertclogeff anea as we ore (30) close to eort the R.T of air continuou Leerearan
4.) Looming \Rightarrow Cein colder resio

seviceton during refreoction af light \Rightarrow
e d. A ray af light in going from domen mediom (It to raron mediom(lb) devivet for the
(sschorice
Sol (r) Pem densa to Raner mediem
(

$$
\delta=\gamma-i
$$

from snelt's lawe

$$
\begin{aligned}
& \mu_{\alpha} \sin i=\mu_{R} \sin r \\
& \sin r=\frac{\mu_{D}}{\mu_{R}} \sin i \\
& r=\sin ^{-1}\left[\frac{\mu_{D}}{\mu_{R}} \sin i\right] \\
& s=\sin ^{-1}\left[\frac{\mu_{R}}{\mu_{R}} \sin j\right]-i
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) At } i=i_{c} \\
& 8>\frac{\pi}{Q}-i_{c}
\end{aligned}
$$

(8) Hfter TIR $\left(i>i_{e}\right)$

W0 5
(Q) $\operatorname{O} \rightarrow 2$

a)
b)

WWW.GRADUSESf:R.COM

$$
\begin{aligned}
& \frac{\sqrt{5} \sin i-\sin 45=\frac{1}{\sqrt{2}}}{\sin i>\frac{1}{\sqrt{5}}} \\
& \tan i=\frac{1}{2} \\
& x=(1-h)-\left(\frac{l-h}{8}\right) \\
& x \geqslant \frac{l-h}{2} \\
& \frac{d x}{d t} \geqslant \frac{1}{2}\left(\frac{d l}{d t}-\frac{d h}{d t}\right] \\
& \frac{d x}{d t} 2-\frac{1}{2} \frac{d h}{d t}
\end{aligned}
$$

Rainbow formation - secondary Rainbow

1) Prifm er an optical device made up of tromperant suffoce where the two refte forfoctros are not Paallel vo sach othe
2) The angle ow tive refrocing sufore called ax Abgle of prism.
Some Elapostant expresion's about i) $A+\left(90-r_{1}\right)+\left(90-r_{2}\right)=180$

$$
\begin{aligned}
& \text { grande } \\
& \text { As and } \\
& \text { 2) Weviction through prism } \\
& s_{1}=i-r_{1}(\Omega) \\
& \rho_{2}=e-r_{2} \text { (Q } \\
& S_{\text {net }}=(i+e)-\left(r_{1}+k_{a}\right) \\
& \Rightarrow S_{\text {net }}=i+e-A
\end{aligned}
$$

Note the net derication oxism sepends upon.-

1) Angle af Dncidence.
IV. Angl af Prifon
iii) Refreetine inden af matterial.
iv aravelengeh of lighit.

Es)

find out-offor
a) Argl of emagenta
solth

$$
\begin{gathered}
\frac{1}{\sin 60}=\mu_{2} \sin \theta \\
\frac{\sqrt{8}}{2} \times \frac{1}{15}=\sin \theta \\
\sin \theta=\frac{1}{2} \\
r_{1}=\theta=30^{\circ}
\end{gathered}
$$

तकी यक्षा + जु

$$
\begin{gathered}
\operatorname{cor}_{2} 260-r_{1} \\
230^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& \sqrt{3} \sin 30=\sin (e) \\
& \sqrt{\operatorname{ce} 260}
\end{aligned}
$$

$$
\begin{align*}
\sqrt{P_{\text {net }}} & =60+60-60 \tag{b}\\
& =60^{\circ}
\end{align*}
$$

WWW.GRADESETTER.COM
(stchoice)
2 (weriction through prism

$$
S_{1}=i-r_{1}(\Omega)
$$

$$
f_{2}=e-r_{2}(Q)
$$

$$
\begin{aligned}
S_{\text {net }} & =(i+e)-\left(r_{1}+\lambda_{e}\right) \\
\Rightarrow & S_{\text {net }}=i+e-A
\end{aligned}
$$

Note the net dericution produeced by the prism depentls upon.-

1) Angle of Incitence.

IV Angle of Priem
ivi Refrectine inden of matterial
iv aravelength of light.

WWW．GRADESETTER．COM

原

find out－Atry
a）Angl of emangenca
b）Aet deviake
8014

$$
\begin{aligned}
& 1 \sin 60=\mu_{2} \sin \theta \\
& \frac{\sqrt{8}}{2} \times \frac{1}{\sqrt{5}}=\sin \theta \\
& \sin \theta=\frac{1}{2} \\
& r_{1}=\theta 2 \quad 30 \\
& \text { य雨 }+ \text { 为名 } \\
& \mathrm{cra}_{2} \mathrm{GOH}_{1} \\
& 230^{\circ} \\
& \sqrt{3} \sin 30=\sin (e) \\
& \angle \angle 260
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{\text { Snet }} & =60+60-60 \\
& =60^{\circ}
\end{aligned}
$$

ghould be Dncidont on the firgs as shown so that it con restoce eftito path.

$$
\begin{aligned}
& \text { lisino/2 trisingo } \\
& \sin \theta=\sqrt{2}+x / \quad \operatorname{sini} 2 \sqrt{2}\left(\frac{1}{2}\right) \\
& \operatorname{ki} 4 \sqrt{3},
\end{aligned}
$$

WWW.GRADESEETER.COM
Angle af deriakon $\rightarrow(\xi)$

Angle of deviation. -

$$
\begin{equation*}
\text { Snet }=i+e-A \tag{i}
\end{equation*}
$$

at second sufforco.

$$
\begin{aligned}
& \mu \sin r_{2}= \\
& \sin e \\
\Rightarrow \quad & e=\sin ^{1}\left[\mu \sin x_{i}\right] \\
\Rightarrow & C=\sin ^{-1}\left[\mu \sin \left(A-r_{1}\right)\right] \\
\Rightarrow & e=\sin ^{+}\left[\mu\left\{\sin A \cos \alpha_{1}-\cos A \sin c_{1} 1\right\}\right]
\end{aligned}
$$

(st choted
should be Ancident it on the first retroce et's on 2) path.

$$
\begin{aligned}
& \begin{array}{l}
\mu_{1} \sin \theta / 2 \text { thesingo } \\
\sin \theta=\sqrt{2} / 2 / 1 \quad \sin 2=\sqrt{2}\left(\frac{1}{2}\right)
\end{array} \\
& \sin \theta=\sqrt{2} \quad \operatorname{cic} 45 \cdot A
\end{aligned}
$$

Angle af deviation $\rightarrow(S)$

Angle of deviation. -

$$
\begin{equation*}
\text { Suet }=i+e-A \tag{i}
\end{equation*}
$$

at second sufforco.

$$
\left.\begin{array}{rl}
& \mu \sin r_{2}=\sin e \\
\Rightarrow & e=\sin ^{+1}[\mu \sin \sin] \\
\Rightarrow & C=\sin ^{-1}\left[\mu \sin \left(A-n_{1}\right)\right] \\
\Rightarrow & \left.e=\sin ^{+1}\left[\mu \int \sin A \cos \varepsilon_{1}-\cos A \sin \alpha_{1}\right]^{\prime}\right]
\end{array}\right]
$$

WWW.GRADESETTER.COM
(sst choice

$$
\begin{array}{r}
\sin r_{1}=\frac{\sin i}{\mu} \\
e=\sin ^{-1}\left[\mu\left\{\sin A \sqrt{1-\sin i}-\frac{\cos A \sin i}{\mu}\right]\right. \\
S_{\text {net }}=i^{u}+\sin ^{-1}[\mu \\
\left.\left.\sin A \sqrt{\frac{1-\sin ^{2} i}{\mu^{2}}-\frac{\cos A \sin i}{\mu}}\right]\right]-A
\end{array}
$$

- Graph b/w Shet and angle of Thaidence \rightarrow

Dortant proint Relates to graper
In whit Gaph a catairwww,gRAPESETTER.com
angle r_{2} will be longe, ant if this vole of r re will take place at the ethel ingle' than Til will toke place at the gins surface ans a will not be able to reciene any strogenot eq ray for the second senfere

2.) Principal of reversibility \Rightarrow
(st Choice)
From the princpal af renersibilits and and angle soy the value of Angle mentually same dericik af omrgence we are getsing of Angle af Incidorce. for two siboer the
3) Whan the deviaton is minimuer equal congle of Treidere in fourd.
tro angle of congence.

Angle of minimeem devicution whan Leviation is minimuon

$$
\begin{aligned}
& \angle i=\angle C \\
& \angle r_{1}=\angle R_{8}=\frac{\angle A}{2} \\
& S_{\text {min }}=2 i-A \Rightarrow i=\frac{A+S_{\text {min }}}{2}
\end{aligned}
$$

From seell's laie at int fruforer-

$$
\begin{gathered}
\sin i=\mu \sin c_{1} \\
\Rightarrow \sin \left(\frac{A+\delta \sin }{2}\right)=\mu \sin \left(\frac{A}{2}\right) \\
\Rightarrow \sin \left(\frac{A+\delta \min }{2}\right)
\end{gathered}
$$

Fihe value of angle of minimum deviction depend's upon cangle of prism ascuellos refrective inden of itts map

Eampler \rightarrow

fins out anglo of mirimum doricetion ase as angle of Dreidence for which Leviction if
s/n

Ans 60,

$$
\sqrt{3} 2 \frac{\sin \left(\frac{60+5 \sin }{2}\right)}{\sin \left(\frac{60}{2}\right)}
$$

$S_{m i n} 2$

$$
B P i<\frac{A+\rho_{\text {min }}}{9}
$$

WWW.GRADESETITER.COM
4.) Angle of maximuen doviation -

5.) Condition of No-emergence \Rightarrow 1

At Ift fufor
Sngozalishl,
Sintal 1 www.gradesemtracom
fot and suaffor 1-

$$
\begin{aligned}
& \operatorname{ra}_{2}>i_{c} \\
& \sin x_{2}>\sin i_{c} \\
& \sin \lambda_{2}>\frac{1}{d t} \\
& \sin \left(A-r_{4}\right) a>\frac{1}{d l}
\end{aligned}
$$

At 政 suffoce

$$
\begin{aligned}
& \sin 9_{0}=\mu \sin r_{1} \\
& \sin r_{1}>\frac{1}{d_{1}}=\sin i_{e} \\
& r_{1}=i_{c} \quad-(i)
\end{aligned}
$$

At $2 n d$ sorfae

ESR

Find out angle of max. deviation.
$8)^{4}$

$$
\begin{aligned}
& i=\frac{\pi}{2} \\
& e=?
\end{aligned}
$$

$\mu_{1} \sin 902 \sqrt{2}$ in r_{1}

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}=\sin r, \\
& \sqrt{2} \sin 15^{\circ} 2,1 \sin e \\
& r, 2045^{\circ} \\
& \text { fine }=\sin ^{-1}(\sqrt{2} 8 n+s)
\end{aligned}
$$

$$
\begin{aligned}
\text { Q Been }^{\text {San }} & =\frac{\pi}{2}+\left[\sin ^{-1}\left(\sqrt{2} \sin 15^{\circ}\right)\right]-60 \\
& =30^{\circ}+\sin ^{-1}\left(\sqrt{2} \sin 15^{\circ}\right)
\end{aligned}
$$

cu
(st choice
sookeping phase AB ventical fill the's angle becomes 90°, Find out an exprension fer the deviction throughthe "Ind pherenc as a function of " θ " cond drouthe graph also.

जीटन्र ABandre of की:्change रधि? सै सिर्क " $A C^{\prime \prime}$ पर matevicel deppopite कसे Angle ef " θ " की पhereore की से 90° तक

$$
i_{c}=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}
$$

Whan

$$
\sqrt{2} \sin \theta=\sin \gamma
$$

$$
x=\sin ^{-1}[\sqrt{2} \sin \theta]
$$

$$
J=2-\theta
$$

$$
f=\sin ^{-1}\left[\sqrt{2} \sin ^{2}\right]
$$

$$
\delta=\frac{\pi}{2}-\theta
$$

WWW.GRABESETTER.COM

Page No.	185	
Date	1	1

A prism haring anglo of prism less then "6 called as thin prism. Where the two refold suefoees are nearly parallel.

((3) In the can of glans slab whet tho two rel sufoce ore costly poallel the dericetion (s) whereas:.

In the care of thin prism the ref suffices are nearly parallel so the will be very-very som ell hence All the dovicetr? con be treated as minimum devicetion.

80,

$$
(\sin \pi=f(6)
$$

WWW.GRADFSETTER.COM
(st Choice

$$
\frac{\mu A}{2}=\frac{A+\rho}{2}
$$

$$
\rho=(\mu-1) A
$$

Fer the thin prism the angle of deviator depend's upon

1) Angleaf prism and
2) Refrechue Index (all) of the material.

Disperion of light \rightarrow
(8) monochromatie 1- the morizhromecte light ho wavelength only.
(4) Dispevion of light: \Rightarrow
when the light having more thon onel fall's on one sarfoce of the prisonth it splitt's into it's constivaentls wavelengt Then phenomeron iscalled as dipersion off
\Rightarrow Cauchyls expression :-

$$
\mu=A+\frac{B}{\lambda^{2}}+
$$

(320) deperty oni
memp: $\lambda=$ warelengeth

$$
\begin{aligned}
& \lambda_{v^{2}}<\lambda_{1}<\lambda_{D}<\lambda a<\lambda \lambda_{x} \lambda_{0}<\lambda_{R}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{v}>f_{c}>f_{\infty}>\cos _{a}>\rho_{y}>\delta_{0}
\end{aligned}
$$

(s choice)
Note \rightarrow Abeam af white light Dossing through a hollow prism fane no spesersus $\rightarrow \rightarrow \rightarrow a$

WWW.GRADESETTER.COM

Combination of faro prison-

1) Dispersion without deviation -

$$
\begin{aligned}
& \left(\mu_{y}-1\right) A=\left(\mu_{y}^{\prime}-1\right) A^{\prime} \\
& A^{\prime}=\frac{\left(\mu_{y}-1\right) A}{\left(\mu_{y}^{\prime \prime}-1\right)}-(i)^{\text {or }} A^{\prime}=\frac{\mu_{y}}{\mu_{y}}
\end{aligned}
$$

$$
\begin{aligned}
Q_{\text {net }} & \Rightarrow\left(\mu_{v}-\mu_{R}\right) A-\left(\mu_{v-}^{\prime} \mu_{R}^{\prime}\right) A \\
& \Rightarrow\left(\mu_{v}-\mu_{k}\right) A-\frac{\left(\mu_{v}^{\prime}-\mu_{R}^{\prime}\right)\left(\mu_{y-1}\right)}{\left(\mu_{y}^{\prime}-1\right)}
\end{aligned}
$$

www.gradesffacrecom
($Q_{\text {net }}=\rho_{i}\left[\omega-\omega^{\circ}\right]$
Here
$S_{1} \Rightarrow$ mean deviation protued by 此 prosifor!

Acombinction of tur prison in which deviation Produced for the mean rey by the first prism in equal and opposite to that prodaest by the seeond prism in called a lireets vision prism ${ }^{\prime \prime}$
2.) Deviation without isispersion (Achromatism)

An achromatic-combinaton- of two prism in which net re resutter dispersion is tho and deviation is produced.

$$
\begin{gathered}
\left(\mu_{v}-\mu_{R}\right) A=\left(\mu_{v}^{\prime}-\mu_{R}\right)^{\prime} A^{\prime} \\
\left.A^{\prime}=\left(\frac{\mu_{v}-\mu_{R}}{\mu_{v}^{\prime}-\mu_{R}^{\prime}}\right) A\right] \\
S_{\text {net }}=\left(\mu_{y}-1\right) A-\left(\mu_{y}^{\prime}-1\right) A^{\prime} \\
=\left(\mu_{y-1}\right) A-\frac{\left(\mu_{y}^{\prime}-1\right)\left(\mu_{v}-\mu_{R}\right) A}{\left(\mu_{v}^{\prime}-\mu_{R}^{\prime}\right)} \\
=\left(\mu_{y-1}\right) A\left[1-\left(\mu_{y}^{\prime}-1\right)\left(\mu_{v}-\mu_{R}\right)^{\prime}\right]
\end{gathered}
$$

www.GRADESETTER.COM
(lochorice
T. $\mathrm{A} . \mathrm{C}$

Find outi- of

1) Angle af prism

11i) ange $<i_{1}$
ai)

$$
\begin{aligned}
& S_{m n}=120-A \\
& 60^{\circ}-120=-A \\
& 7 A=A 0 \\
& A=60^{\circ}
\end{aligned}
$$

11)

$$
\begin{array}{r}
\mu 2=\frac{\sin \left(\frac{A+\rho \sin }{2}\right)}{\sin \left(\frac{A}{2}\right)} \\
=\sqrt{3}
\end{array}
$$

$$
\text { (ii) } \begin{aligned}
& 8=\text { ite- } A \\
& 65=i+70-60
\end{aligned}
$$

5. 24

Find out with how much angle the plane mir to he rotated to that the net dericution be
Sol

$$
\begin{aligned}
& \mu=\sin \left(A+\rho_{\text {mun }}\right) \\
& S_{\text {prison }}=(u-1) A=2^{\circ} \\
& S_{\text {miner }}=90^{\circ}=180-20^{\circ} \\
& S_{\text {net }}=92^{\circ}
\end{aligned}
$$

80,
we rotate mires dy "10"

$$
\omega_{f}=/ 0.083
$$

WWW.GRADESETTER.COM
(sse choice)

$$
\begin{array}{ll}
\omega=0.053 & \omega^{\prime}=0.034 \\
A_{y}=1.88 & A_{y}^{\prime}=1.59 \\
A=? & A=4 \\
\theta=0 &
\end{array}
$$

$$
\omega 2 \frac{\theta}{\operatorname{Snnea}}
$$

$$
\omega\left(\mu_{y}-1\right) A=\omega^{1}\left(\mu_{y}^{\prime}-1\right) A^{\prime}
$$

a)

$$
\begin{aligned}
& \frac{A^{\prime}}{A} \\
& 2\left(\mu_{v}+\mu_{n}\right) A \sum\left(\mu_{v}^{\prime}-\mu_{R^{\prime}}^{\prime}\right) A^{\prime}
\end{aligned}
$$

WWW.GRADESETTER.COM
b) $2\left(\mu_{y}-1\right) A=\left(\mu_{y}^{\prime}-1\right) A^{\prime}$

$$
\frac{A^{\prime}}{A}=\frac{2\left(\mu_{y}-1\right)}{\left(\mu_{y}^{\prime}-1\right)}
$$

| $\frac{\sigma_{i}=4}{\theta \cdot N 0-1}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| λ^{2} |

a)

$$
\begin{gathered}
\mu 21.20+\frac{b}{\lambda^{a}} \\
0.82 \sin 53=\frac{1}{1020+\frac{b}{\lambda^{2}}} \\
\lambda 24 \operatorname{4000A}
\end{gathered}
$$

$$
b 2 \cos 0.8 \times 10^{6}
$$

WWW.GRADESETTER.COM

a) for no tenting $n_{1}=R_{2}$

$$
\begin{array}{r}
\text { a) for no tentung } n_{1}=n_{2} \frac{108 \times 10^{4}}{\lambda^{2}}=\frac{405+1.80 \times 10^{4}}{\lambda^{2}} \\
\lambda=6000^{n}
\end{array}
$$

bi)

$$
\begin{aligned}
& \lambda \perp \lambda_{0}= \\
& a^{a}=? \\
& A+260
\end{aligned}
$$

$\mu_{1} \sin i=\mu_{2} \sin y$

$$
Q_{1}^{4}<\operatorname{lin}^{1}\left(9_{2} h_{n n}\right)
$$

smine rifsen

$$
\begin{aligned}
& \sin j^{2}=[\mu]^{1 / 2} \\
& i=\sin ^{-1}(3 / 4) \\
& x_{x}=2 \\
& \text { Q:M0-4 } \\
& \mu 2 \\
& \text { ditiontar } \\
& \text { For T.I.R } \\
& A>2 i c \\
& \frac{A}{2}>i c \text {. } \\
& \sin \left(\frac{A}{2}\right)>\sin d_{C}^{\prime} \\
& \sin \left(\frac{A}{a}\right)>\frac{1}{\mu} \\
& \mu>\frac{1}{\sin A / a} \\
& \mu>\operatorname{cose}\left(\frac{A}{2}\right) \\
& \text { PerTi.RNot to take ploee } \\
& \mu_{\operatorname{man}}<\operatorname{Core} 1 / 2 \\
& \frac{8}{11}=\sqrt{\left.1+a^{2}\right)^{2}(2)}
\end{aligned}
$$

(st choice

$$
\mu>1.44
$$

$$
\left[\frac{\sqrt{5} 4}{0 \times 16-2]}\right.
$$

$1 \sin 0=\mu_{2} \sin x$

$\sin =0$

$$
r=\sin ^{1} 0
$$

$$
220
$$

$\mu_{2} \sin x x^{2} \mu t_{2} \sin$

$$
1.44 \sin 30=\sin 2
$$

$$
e=\sin ^{+1}(0.72)
$$

$$
\phi=e-90^{\circ}
$$

$$
\phi=\sin ^{t}(0.72)-90^{\circ}
$$

Per T, R $\sin 30 \geq \frac{1}{9}$

$$
\operatorname{sinde}=\frac{1}{1+44}
$$

WWW.GRAPESETTER.COM

1) $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{\mathbb{R}}$ $\left(\right.$ (Relation eflo "u"ant " $V^{\prime \prime}$ ").
2) $m=\frac{h_{i}}{h_{0}}=\frac{\mu_{1}}{\mu_{2}}\left(\frac{v}{\mu_{2}}\right)$
3) $\frac{1}{\delta}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ sams oि $\frac{1}{2}$ (downe
makn formula)
4) $\frac{1}{\delta}=\frac{\mu_{2}-\mu_{1}}{\mu_{3} R_{1}}+\frac{\mu_{3}-\mu_{2}}{\mu_{3} R_{2}}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

WWW.GRADESETTER.COM
dy (st Choice
Refoochion at sphenical Surface
2. spherical refractiry suffor -
spherical reprocting fuffore ir a poit of solid sptire which is made up of any transparent subitaniz convex Refochy surfors concave Refoctry Sirfoo

Per any sphaical lefrocing surfore ur define sur different foci

1) Arst Principal forcus.
(aso 2) A sceond Princi (जनि काला zay Poalle हीया)

SSETTER.COM
(s) chated
principal axis from whore Dncident ray appea dirase on she sothat after the refrockion to convare socted ray become perallel to Aprinciple axis.
and Prinple anisi - If the Dreidend say's are parallel to principle axis thon and princept focies ia point on principle ans where the refrocted ray's eithen Convaise on fromshere refroctet ray's appea to diverse

The conven refoeling suffor behave' life a conversing surfore whereas the cancave refrocting surfore behaves like a diversing "Sufore provided the outgide medecom is sun as compore vo matericel of refrecting sefoce.

Boos
\# Relation of co objet distance(u) and Tinage disti fer spherical reffocting sirfoce.

sten the
Lsap ${ }^{2}$
sneltsta
fromsnoll's lawer -

$$
\mu_{1} \sin i=\mu_{2} \sin \gamma
$$

$\Rightarrow \mu_{1} i=\mu_{2} r \quad(1) \quad$ (Bfar poraxial rays Liand Cro
stepent hongte"iont"s"

$$
\begin{equation*}
i=\alpha+a \tag{2}
\end{equation*}
$$

step th
निकाल स्वlue
put onc

$$
\Rightarrow P O=-l
$$

WWW.GRADESETTER.COM

Note \Rightarrow refrecture indenaf that rays are shocon ary
where in is refoctive. Irden of ver medilin us è ref soys aned shocon.
where reefor tरू
a)

b)

Findout app' depth from fop surfoel for Image of P oint " 0 ".

$$
\begin{aligned}
& \text { en } \frac{3}{2 r}-\frac{1}{1 / 2} \frac{1}{R} \\
& \Rightarrow \frac{1}{V}-\frac{3}{2(-20)}=\frac{1-3 / 2}{-20} \\
& \Rightarrow V=-20 \mathrm{~cm} \\
& \text { WWW.GRADESETTER.COM }
\end{aligned}
$$

WWW．GRADESFTTER．COM
（st Choice
［奋年

Find out the vrosition af Dmages formed by boith the refrocting surfoce＇seperatly．
solel For ist surfore．

$$
\begin{aligned}
& \mu_{1}=3 \\
& \mu_{2}=1 \\
& \mu_{2}=-30 \\
& R=-200 \mathrm{~m}
\end{aligned}
$$

$\frac{-3}{2 u}=\frac{-1}{40}\left|-\frac{1}{20}+\frac{-3}{120}\right| \frac{1}{2 u}-\frac{1}{2}+1$
If osinfoo

（8）Der ITnd furfoes

$$
M_{1}=3 / 2, M_{2}+4 / 7
$$

WWW.GRADESETTER.COM

$$
\begin{aligned}
& \text { AGESEDERCOM } \\
& \frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-u_{1}}{R} \\
& \frac{4}{3(v)}-\frac{9}{v(-20)}=\frac{4 / 9-7 / 2}{30}
\end{aligned}
$$

$$
v=-16.5 \mathrm{~cm}
$$

Ex9) (a)
(b)

Find out the distane of final image from 'I??
ce se

$$
\frac{1}{2} 4 \frac{1}{4}{ }^{2}
$$

a)
a)

For art reffachion

$$
423 / 2=\frac{A O^{\prime}}{A O^{\prime}}=A O^{\prime}>4 \operatorname{son}
$$

Per Concave mirror

$$
\begin{aligned}
& 42-6 \mathrm{sm} \\
& f=-10 \mathrm{~cm} \\
& \frac{1}{v}=-\frac{1}{10}+\frac{1}{6 s}=\frac{-13+2}{190} \\
& v=\frac{-130}{11}+1
\end{aligned}
$$

Per Ind refortion.

$$
\begin{aligned}
& l=\frac{3}{2}=\frac{A 0^{\prime \prime}}{A 0^{\prime \prime \prime}}=\frac{20-\frac{130}{11}}{A 0^{\prime \prime \prime}}=\frac{90}{1\left(A_{0}^{\prime \prime \prime}\right)} \frac{1}{v}+\frac{3}{2(-220)}=\frac{3}{440}= \\
& A O^{\prime \prime \prime}=\frac{180}{33}=\frac{60}{11} \mathrm{~cm} \quad \frac{1}{v} 2 \frac{1}{40}-\frac{-\frac{1}{4}}{2}
\end{aligned}
$$

WWW.GRADESETTERGCOM
(st. Choice)

Find distance of final Image from "E"'
\qquad

WWW.GRADESETTER.COM
(st Choice

Fer andreffoction-

$$
\begin{gathered}
\frac{4}{3(v)}-\frac{3}{2(-40)}=\frac{4 / g-3 / 2}{10} \\
v=-\frac{320}{13} \mathrm{~cm}
\end{gathered}
$$

Per 3nd refrackion

$$
\begin{aligned}
& \frac{3}{2(v)}-\frac{4}{3\left(\frac{-580}{13}\right)}=\frac{3 / 2-4 / 3}{-10} \\
& \frac{3}{2 v}-\frac{4}{-\frac{1740}{13}}=\frac{9-8}{6 \times 10} \\
& \frac{3}{2 v}+\frac{4 \times 10}{1740}=\frac{1}{60} \\
& \frac{3}{2 v}=\frac{-1}{60}-\frac{54}{1740} \\
& \frac{3}{2 v}=\frac{-29-54}{1740}
\end{aligned}
$$

www.gRADESETTER.COM
(rathore

μ_{1}, μ_{2}

$$
\begin{aligned}
& \frac{\text { forf } 1 \Rightarrow}{} \frac{-\mu_{1}}{f_{1}}=\frac{\mu_{2}-\mu_{1}}{R}-(1) \quad \frac{\text { for } f_{2}}{\mu_{2}} \\
& f_{2} \frac{\mu_{2}-\mu_{1}}{R} \\
& \frac{-\mu_{1}}{f_{1}}=\frac{\mu_{2}}{f_{2}} \Rightarrow \frac{-f_{2}}{\mu_{2}}=\frac{f_{1}}{\mu_{1}} \\
& \Rightarrow \frac{-f_{1}}{\mu_{1}}=\frac{f_{2}}{\mu_{2}}
\end{aligned}
$$

Linear magnificetron for rebrachon through epherteal si

From Incll's lawi.

$$
\mu_{1} \sin i=l_{2} \sin \gamma
$$

per Ponarial ray's

$$
\begin{aligned}
& \mu_{1} \tan i=\mu_{2} \tan \\
& \Rightarrow \mu_{1}\left[\frac{A A P}{P A}\right]=\mu_{2}\left[\frac{A^{\prime} P^{\prime}}{P_{A^{\prime}}}\right] \\
& \left.\begin{array}{l}
A B=H_{0} \\
A^{\prime} B^{\prime}=-H_{A} \\
P A=-l l \\
P A^{\prime}=V
\end{array}\right\} \\
& \Rightarrow \mu_{1}\left[\frac{H_{0}}{-\mu_{H}}\right]=\mu_{2}\left[\frac{-H_{T}}{V}\right] \\
& m=\frac{H_{D}}{H_{0}}=\frac{\mu_{1}}{\mu_{2}}\left(\frac{n}{4}\right)
\end{aligned}
$$

In thir exprension alltheterms will be in \& Sign
wWW.GRAGESET

807"

$$
\begin{aligned}
& H_{0}=0 . \text { Scm } \quad \text { (Connen miner) } \\
& \mu=1.5 \\
& R=10 \mathrm{~cm} \\
& S S \\
& A=-30 \mathrm{~cm} \\
& H_{\rho}=?
\end{aligned}
$$

$2 \frac{1}{2}-580$

($\frac{2}{3}\left(\frac{\mathrm{~N}}{30}\right)$
$\frac{d_{2}}{2 v}-\frac{u_{1}}{4}=\frac{4_{2}-u_{1}}{a^{2}}$

$$
V 2
$$

then peet
$M L$

calculate the distance of final Immerge of " O " as vies from left.

Sol
Wa $u=-1 \mathrm{scm}$

$$
\begin{array}{ll}
R>-10 \mathrm{~m} & \Rightarrow \frac{1}{v}+\frac{2}{15}=\frac{1-2}{-10} \\
\mu_{2}=1 & \Rightarrow V=-30 \mathrm{~cm}
\end{array}
$$

Lonse is on optical device made up of a trampores substane where atlecest one of the suffor hast be spherical Repoching suffor

The probtom baret on than lense can be derestly solved oung the expresions dewves for thin leme whee as the problem baed on thick fone can he solvet oy appliying the expression form repacton at sptrical surfore twice.

Type of lonse: -

1) Convex 1 -
a) Ticonvén

$$
(\operatorname{lor} 1)
$$

2) Concare:-
a) Hiconeare
b) Pano concare
c) conex
\square
Ofrirror

WWW.GRADESETTER.COM
(st Choice

1) The convent lenses are creatively then convene tons

Notes in the middle the middle. thin at laving langer radios af
2) The sufore should le, written Ats. corcuter should doff foch ane defines.
per any lome tho

Note. - use we and focal length to soling the problem while solving the problom lard on sone it in the ins focal length which col be used a. it it the for convent lome and cot sea the farce flense

* optical conte \rightarrow

It in the point on the principle axis os Shown en the figure through which a soy a light Dances underictel.

- Lens maker is formula - जब lowe कर स् का medium का शि. तम मे formulaहैगा ध्याने०
per and subfer =

$$
\begin{aligned}
& \frac{\mu_{1}}{V}-\frac{\mu_{2}}{V^{\prime}}=\frac{\mu_{1}-\mu_{2}}{R_{2}} \text { (2) } \\
& \text { en (0) }+ \text { ब्व(1.) } \\
& \frac{\mu_{1}}{v}-\frac{\mu_{1}}{U}=u_{2}-\mu_{1}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right] \\
& u=-\alpha \\
& v=f \\
& \frac{1}{f}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \text { makors } \\
& \text { formuba }
\end{aligned}
$$

Noter -
The focal length af spherial mirrer dopends only on the relaie of cosrathe. 1 tereo wherea the focal longth of
a tonce depon't's upon following paromoter
ii) Radi of cavetere af botel the siden
ii) Refreetre Inden of the material of leme
(ii) RiD of the modiom in whieh ulome it kept.
are fording out the cocal lengyb
iii) Thei farmula will he only applied of theo a 1 ? forme medicom ova looth the sides of lonos

Concaine
$\stackrel{+}{\rightleftarrows}$

$$
R_{1}=-v e, \quad R_{2}=+v e
$$

(1) If $\mu_{2}>\mu_{1}$

$$
\frac{\frac{1}{f}+\phi\left(\frac{l_{2}}{l_{1}}+1\right)}{\Delta v_{1}} \frac{t_{r e}}{\left(\frac{1}{R_{1}} \cdot \frac{1}{R_{2}}\right)!}
$$

$$
f=-\infty
$$

(6) Df $\mu_{2}<l_{1}$

conven.

$$
R_{1}=+v e, \quad R_{2}=-v
$$

(46) If $\boldsymbol{l l}_{a}>\mathrm{Al}_{1}$

$$
\frac{1}{f}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right.
$$

$t-580$.

$$
f=\text { the }
$$

(B) If $\mu_{2}<\mu_{1}$

$$
\begin{aligned}
& \frac{1}{f} 2\left(\frac{\mu_{2}}{\rho_{1}}-1\right)\left(\frac{1}{R_{1}} \cdot 0\right. \\
& f v_{1}, \text { ne } \\
& f=-n e
\end{aligned}
$$

(st choice)

Nater-
per the conern it behamels like a rien ir small shon it lev conversing lonse.
whereas Bf R.D af tho modire behaven like as divorsing lens.

Simitary for concave leme if RIDof the medion infricellon thon it leha nen like a sirening fonse and riee versa. मादखवें \Rightarrow Lense भपना propatien वमी sho e0 करेगा जब पुस lane के बाहर दौनो तरक उससेए कम रि० का nलdiom phrerest हो.
ल्बiix 1 माद उछ्य lense का रिमी उसकक कम कम होगा तब रिय दिरी
 केरिें

O WWW.GRADESETTER:COM

$R_{1} \equiv 10 \mathrm{~cm} \quad R_{2}=10 \mathrm{~cm} \leq$

-c)

Find out focal longthaf loner

(st choice)

$$
\begin{gathered}
\text { d) } \frac{1}{f}=\left(\frac{1 / 2}{2}-1\right)\left(\frac{1}{-10}-\frac{1}{\infty}\right) \\
f=40
\end{gathered}
$$

Conelusion \Rightarrow
If there in same mediom ona both the site of lense than foral length ders not depont's upon from whieh direction Dreidart ray's are cooving.
का (xदि tense suifore के होनो वरक modo
$1-$ A तरक से आय हो तब उख Cose मों light बsक किस आस्ता।

How to find eut focal -congth at a lons ona forth the sites af some are differif

Per iff refpocton -

$$
\frac{\mu_{2}}{v^{2}}=\frac{\mu_{2}-\mu_{1}}{\alpha_{1}}
$$

(i) $\left\{\begin{array}{l}\text { for forsi } \\ \mu=-c\end{array}\right.$
per 2nd repocion: -

$$
\begin{aligned}
& \frac{\mu_{3}}{f}-\frac{\mu_{2}}{v}=\frac{\mu_{3}-\mu_{2}}{R_{2}}-(i)\{v \\
& \frac{1}{f}=\frac{\mu_{2}-\mu_{1}}{\mu_{3} R_{1}}+\frac{\mu_{3}-\mu_{2}}{\mu_{3} R_{2}}
\end{aligned}
$$

WWW.GRADESETTER.COM
(s choice)
(s choice)

Pindocit focal length of the given lems if a) Rays af light are coming from left (b) Mays of light are comeney from right
a)

$$
\begin{aligned}
& \frac{1}{f}=\frac{3 / 2-4 / 9}{2 \times 10}+\frac{2-3 / 2}{2 \times-20} \\
& 2 \frac{9-8}{6 \times 20}+\frac{1}{2 \times 20 \times 2} \\
& y=\frac{1}{120}+\frac{1}{80}
\end{aligned}
$$

$$
\Rightarrow \frac{2-9}{\text { WWWRGADES }}
$$

$$
\text { b) } \begin{aligned}
\frac{1}{f} & =\frac{3 / 2-2}{4 / 3 \times 20}+\frac{4 / 3-3 / 2}{4 / 3 \times 3 / 2(-10)} \\
& \rightarrow \frac{3-4}{2 \times \frac{4}{9} \times 20}+ \\
& f=-160 \mathrm{~cm}
\end{aligned}
$$

Conclueson.
If there is ifff n mediem one both fider of dlenst shonfocal foigth deponts upon from rolvich directon ray's of light are coming.
*) Ray diagram for conver donse \rightarrow If object i kortal a

Tosition of IT mages seof fleres
Nathe i-Real and invardet.
sizes highly onaliffed I
$\sqrt{2-1}$ If abtiat in kiept boyord " $2 R$ " $~ \rightarrow$

Dosition of Dmage $\rightarrow b / \omega$ Fonn2R
Natwar \rightarrow Reuland Inveded
sizer $>$ grele, than ofidet.

WWW.GRADESETTER.COM
(stchoice
If abject in Lept at "2P"

Position of Irrege $1 \rightarrow$.at it ${ }^{2}$
Natue \Rightarrow Real ond Iproetted sizers some ar that alf obrect.

If object è pept $\theta / 00{ }^{\text {" }} F$ " and "2 F "

Dositgon \rightarrow Aogond $2 f$
sis is large then offict
Nathers Real ans Dhrouts

WWW GRADESETTER.COM
If object in kept at "F".

Rogitron af Imagesest ∞ rathe \rightarrow Real and Dinreatiz sizes highly magniffor
6) If abied ei kept b/10. Fond lons.

Dosidon of Imagees on the sare size as the Oby'ect
Natuers virteal and aect
Itzers largen thon ofject

WWW.GRADESETTER.COM
(st Choice
Concare lonses
1.) If aftiat in tept at " ∞ " -
 Nature $r>$ vrrtal and erect site \rightarrow Highly diminighad
2. If of let is kenf o/co Fand leme.

Rositin of Dmages D/Lo optral eerke ont feceo
Nathe is virtlelferet sizers smalts thanoby'ed

Lenae formula and its applicatoon: -

$$
\begin{align*}
& \frac{1}{\nabla}-\frac{1}{\mu}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{i}\\
& \frac{1}{f}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \tag{8}
\end{align*}
$$

Fom (1) and (9)

$$
\sqrt{\frac{1}{f} 2 \frac{1}{v}-\frac{1}{4}} \text { 'Henciproved u }
$$

(8) Hoand में शुरू में derive करे।
(4) Linear magnification for the lone -

$$
\tan \theta=\frac{A D}{O A}=\frac{A^{\prime} P^{\prime}}{O A T}
$$

where,

$$
\begin{aligned}
& A B=H_{0} \\
& A^{\prime} P=-\mathcal{I} \\
& O A=-\mu \\
& O A^{\prime}=V
\end{aligned}
$$

$$
\frac{H_{0}}{=l}=\frac{-\mathrm{HP}_{\mathrm{P}}}{\mathrm{~V}}
$$

roans
Wen If coven ieee is hang focal length 100 fins out where the object should he plods so that Image er tars times magnified It Image eicreal
$m=-2$
$f=10 \mathrm{~cm}$
$\frac{10}{10+u}=-2$

WWW.GRADESETTER.COM
(sst choice

Fins the separation b/00 tense and mire So that final Image Corciides with the ofintet)
8)/ 1

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{v}-\frac{1}{4} \\
& \frac{1}{1 s}=\frac{1}{v}-\left(-\frac{1}{90}\right) \\
& \frac{1}{v}=\frac{1}{1 s}-\frac{1}{20} \\
& =\frac{4-9}{60}
\end{aligned}
$$

$$
r 260
$$

for lene

$$
\begin{aligned}
& \mu=-20 \mathrm{~cm} \\
& f=1 \mathrm{scm} \\
& v=60 \mathrm{~cm}
\end{aligned}
$$

Dn the figere shown fighen monng upt with constand soed whe a lense ir relead arest. fint thespeed of image af the fort which is fount to the lanse obte 0.28 aro

(st choice

Find out position and size of final Imo formed:-

$$
\begin{aligned}
& \text { for lens: } \\
& \text { ho }=100 \\
& f=10 \mathrm{~cm} \\
& 42-20 \mathrm{~cm} \\
& v=?
\end{aligned}
$$

$$
\frac{1}{20}-\frac{1}{5}=\frac{1}{2}-\frac{1}{4}
$$

$$
\frac{1}{v}=\frac{1}{f}+\frac{1}{u}
$$

$$
=\frac{1}{10}-\frac{1}{20}
$$

$$
=\frac{9-1}{20}
$$

$$
y \frac{1}{20}
$$

$$
m=-1
$$

For lass
U_{1}-WWW.GRADESETTER.COM

$$
\begin{aligned}
m_{\text {net }} & =m_{1} \times m_{2} \times m_{3} \\
& =[-1] \times \frac{1}{2} \times 2 \\
& =-1 \\
\text { h zead } & \text { final \& mal }=1 \text { an (beloev the P.I })
\end{aligned}
$$

Fins out the sepeation $b / 10$ the lense and misers so that the final Inages fermed as IAfonts on the same siz os thet of ofjelt

$$
\begin{aligned}
& f=15 \mathrm{~cm} \\
& a=-12 \mathrm{~cm} \\
& v=? \\
& \frac{1}{\delta}=\frac{1}{v}-\frac{1}{4}
\end{aligned}
$$

por mirr.

$$
4=-(75+x)
$$

$$
\begin{array}{rl}
\frac{1}{v}=\frac{1}{1 s}-\frac{1}{12} & \frac{1}{-x} \pm \frac{1}{(7 s+x)}=\frac{1}{20} \\
=\frac{4-s}{60} & \frac{-(7 s+x)-x}{x(7 s+x)}=\frac{1}{20} \\
=\frac{-1}{60} & \frac{-7 s-x-x}{x(7 s+x)}=\frac{1}{20} \\
=-60 & x 225,-80
\end{array}
$$

$$
\begin{aligned}
\text { The sepeadon } & =15+2 \mathrm{~s} \\
& =48 \mathrm{~cm}
\end{aligned}
$$

The equitomen fons a having focal longyt Position of of m . tohen it in एलA on air. Ginseat

$$
\frac{1}{10}=\left(\frac{3}{2}-1\right)\left(\frac{1}{\pi}+\frac{1}{R}\right)
$$

per uftrepocton. -

$$
\begin{aligned}
& \frac{3}{2 V}+\frac{1}{90}=\frac{\left(\frac{3}{2}-1\right)}{30} \\
& r=27000
\end{aligned}
$$

per ind reqforko -

$$
\begin{gathered}
\frac{4}{3 v}-\frac{3}{2(2+0)}=\frac{\frac{4}{3}-7 / 2}{-70} \\
v=120 \mathrm{~cm}
\end{gathered}
$$

Dor Ar s effockor-

$$
\begin{array}{rl}
\frac{3}{2 v}+\frac{4}{3(40)}=\frac{3 / 2-4 / 3}{30} \\
\frac{1}{20 r} & \frac{3}{2 v}+\frac{4}{3(40)}= \\
\frac{3}{2 v}+\frac{4}{3(40)} & =\frac{7 / 2}{30} \\
v 2 r a c k \\
v 2-54 & \mathrm{~cm}
\end{array}
$$

$\frac{1 n}{30}\left(\frac{1}{8}+\frac{1}{4}\right.$ for $4^{\text {th }}$ proctor
(sschoice)
にな4
Di) Amy equiconven so that phe fingel shown
 enide vith the owset wate en the bige.

$$
m=4 / 3
$$

Ex $=13^{2}$
ONO - 48

Powen off an optical device:-

The powe of on optical device ir itts ofility to den'cee the ray's ab dighe

If the aptical device converses the rays of light than it's powe will he the whereces if th will diverses the soyss af light thon poeaen will be tive",

Convare Aिभा तो Pewen the
S. I unit of Powen $\Rightarrow m^{-1}$ orDiopts.
\Rightarrow Powe of a lense \rightarrow

$$
p_{l}=\frac{1}{f_{l}}
$$

Ple Rower of tane
Sl 2 docal length of lenool
\Rightarrow Powenaf spherical mirrer \rightarrow

Note

	f	p
conver lonse	+	+
Concaratons		
conven misreo	+	
Coneare morror	-	

*) Silvaing af lense -

For Ast sepection:-

$$
\frac{\mu_{2}}{v_{1}}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R_{1}} \Rightarrow \frac{1}{v_{1}}-\frac{\mu_{1}}{\mu_{2} \mu_{1}}=\frac{\mu_{2}-\mu_{1}}{\mu_{2} R_{1}}
$$

per reffection

$$
\frac{1}{v_{2}}+\frac{1}{v_{1}}=\frac{2}{R_{2}} \quad(2)
$$

For Endrefochon i-

$$
\begin{align*}
& \frac{\mu_{1}}{V}-\frac{\mu_{2}}{\mu_{2}}=\frac{\mu_{1}-\mu_{2}}{R_{1}} \\
& \frac{\mu_{1}}{\mu_{2}}-\frac{1}{v_{2}}=\frac{\mu_{1}-\mu_{2}}{\mu_{2} R_{1}} \\
& \frac{\mu_{1}}{2}+(1)-(1) \\
& \frac{\mu_{1}}{\mu_{2}}+\mu_{1} \tag{1}\\
& \mu_{1}
\end{align*}
$$

WWW.GRADESETTER.COM
(sst Choice)

$$
\begin{aligned}
& \Rightarrow \frac{\mu_{1}}{\mu_{2}}\left(\frac{1}{v}+\frac{1}{u}\right)=\frac{2}{R_{2}}-\frac{2}{R_{1}}\left(\frac{\mu_{2}-\mu_{1}}{\mu_{2}}\right) \\
& \Rightarrow \frac{1}{v}+\frac{1}{u}=\frac{2}{R_{2}}\left(\frac{\mu_{2}}{\mu_{1}}\right)-\frac{2}{R_{1}}\left(\frac{\mu_{2}}{\mu_{1}}-1\right)+\frac{2}{R_{2}} \\
& \Rightarrow \frac{1}{v}+\frac{1}{u}=\frac{2}{R_{2}}-2\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \Rightarrow \sqrt{\frac{1}{v}+\frac{1}{u}}=\frac{1}{f_{m}}-\frac{2}{f_{l}}
\end{aligned}
$$

\Rightarrow The silveet fonse beharos like a misges whose focal logyth (बeqe) an be ginn by \Rightarrow

$$
\frac{1}{f_{q}}=\frac{1}{f_{m}}-\frac{q}{f_{l}}
$$

Vewn of a silnaed lense

$$
\begin{aligned}
& -p_{e q}=-P_{m}-2 p_{l} \\
& P_{e q}=P_{m}+2 p_{l}
\end{aligned}
$$

Herop:-

$$
\mathrm{Bq}=\text { Powe of silvered }
$$

WWW.GRADESETTER.COM
(lat choice

$$
\measuredangle 30 \mathrm{~cm} \longrightarrow
$$

find out focal loroth of silvort lois as well as position of final image of object.

810

WWW.GRADESETTER.COM $4 \geq-30$

$$
\begin{aligned}
& f=4 \\
& v=? \\
& v=\frac{60}{17} \mathrm{~cm}
\end{aligned}
$$

5 9.5

Tint oect retio of ter Powe.

$$
\frac{1}{5 e q}+\frac{1}{5}-\frac{2}{f}
$$

$$
\begin{array}{rl}
f_{l} & 2\left(\frac{3}{2}-1\right)\left(\frac{1}{\alpha}+\frac{1}{10}\right) \\
& =\left(\frac{3-2}{2}\right)\left(\frac{+1}{10}\right) \\
& =\frac{1}{2} \times \frac{1}{10}=\frac{-1}{20}
\end{array}
$$

是

$$
\begin{aligned}
& P_{l a}=P_{m}+2 P_{l}=2 P_{l}=2\left(\frac{8}{2}-1\right)\left(\frac{1}{10}\right)-\frac{1}{10} \\
& \frac{P_{P}}{P_{1 T}}=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fay } 2 \\
& \theta M O \Rightarrow 10
\end{aligned}
$$

$: f=10 \mathrm{~cm}$
(Conseare marr)

$$
\frac{1}{-28}=-2(11-1)\left(\frac{1}{R}\right)-(1)
$$

$$
\begin{equation*}
\frac{1}{-10}=\frac{-2}{R}-2\left(a(-1)\left(+\frac{1}{R}\right)\right. \tag{2}
\end{equation*}
$$

WWW.GRADESETTER.COM
(lsachoice
welon the xtanernas puref suffos asilvered ans tho dificter en

$$
\frac{E V=2}{E O N O \Rightarrow 10}
$$

(concare morf)

$$
\begin{align*}
& \frac{1}{-28}=-2(1-1)\left(\frac{1}{R}\right)=(1) \\
& \frac{1}{-10}=\frac{-2}{R}-2(M-1)\left(+\frac{1}{R}\right)
\end{align*}
$$

WWW.GRADESETTER.COM
(st Choice

$$
\begin{aligned}
& \mu= \\
& R_{2}=
\end{aligned}
$$

Qeon visulisceston \rightarrow Dh the bock fruffor afo lanse i-silverd ans an afiect is ploest

Thesivened lense conve
madified as a
lonse-mitrar-lonse
Combiration-

*) \triangle sploccoment methot to find out focal longth af a convex lenser

$$
\begin{aligned}
& u=-u \\
& f \geq f \\
& \Rightarrow \quad v 2(D-4) \\
& \rightarrow \frac{1}{(D-4)}+\frac{1}{4}=\frac{1}{7} \\
& \Rightarrow \frac{u+D-4}{(D-4) u}=\frac{1}{7} \\
& \Rightarrow \text { If }=\text { DUन्प } \\
& \Rightarrow u^{2}-D u+f p=0 \\
& \Rightarrow \sqrt{4}=D \pm \sqrt{D^{2}-4 f D}
\end{aligned}
$$

$$
u=\frac{D \pm \sqrt{D(D-4 f)}}{2}
$$

- Cose $4 x+3$

If the seperation b/ of ofretand
in greate than 4 tims af focal leingt
of lense thon their of will be
etand
var position's of. lense for whichu will be able to see the drnage onvthe sereen and for then two pogition'ss Entruchongel. "ond V" Can be muetuall $\stackrel{4}{\Delta} \rightarrow$ D- 4

D -4

$$
\begin{aligned}
& \text { Do } D>4 f \\
& u_{2}=\frac{D+\sqrt{D(D-A f)}}{2} \left\lvert\, \begin{array}{l}
u_{1}=\frac{D-\sqrt{A(D)}}{} \\
v v_{2}=D-u_{2} \\
2
\end{array}\right. \\
& =4 \\
& \text { Notery } m_{2}=\frac{H_{T}(2 n)}{H_{0}}=\frac{V_{2}}{U_{2}} \quad m_{1}=\frac{H_{2}(4+)}{H_{0}}=\frac{V_{1}}{U_{1}}
\end{aligned}
$$

$$
\begin{aligned}
m_{2}=\frac{H_{2}(2)}{H_{0}}=\frac{V_{2}}{4_{2}} \quad m_{1}=\frac{H_{2}(1)}{H_{0}}=\frac{v_{1}}{U_{1}} \\
m_{1} \times m_{2}=\frac{H_{I(\text { Int }} \times H_{2}(\text { mind })}{H_{0}^{a}}=1 \\
\quad H_{0}=\sqrt{H_{I(414)} \times H_{I(\text { Ins })}}
\end{aligned}
$$

Core and

$$
\begin{aligned}
& \text { If } D=4 f \\
& u=\frac{D}{2} \text { rove }
\end{aligned}
$$

Inthin Case their coil be only one Instaniwtein we will get the Image on the fineen ar for then situation the dense conoctly lies bl: the object and screenond hare the Image in equal to the size of the abiding

Case 300

$$
1<4 f
$$

In thin

Combination of tonier \rightarrow
A) If longs are kept in contact \rightarrow

$$
\begin{array}{r}
\frac{1}{v_{1}}-\frac{1}{u}=\frac{1}{f_{1}} \quad-(1) \\
\frac{1}{v}-\frac{1}{v_{1}}=\frac{1}{f_{a}} \quad(-2)
\end{array}
$$

eq (1) + eq (2)

$$
\begin{aligned}
& \frac{1}{v}-\frac{1}{u}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{f_{e q}} \\
& \frac{1}{f_{e q}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}
\end{aligned}
$$

If the conses' are kept in contact than this
Combination of lenses can be replace by anotin lone baring equivalent focal length on which is given by above expression. And In term's of rowan-

WWW.GRADESEfferaicem
(-) Culting of lense \rightarrow
(a) If cutting is done Ir to Principle

$$
f_{1} \operatorname{and} f_{2}>f
$$

\Rightarrow for equiconvex clenses:

If Gutting in done parallel to principle anis \Rightarrow

\leadsto focal length will remain unaffected. because convature is not changed

An equiconvex lense ha focal length 200 , air is cut into two \neq. shown and the watch i as shown in the needs anangements.

WWW.GRADESETTER.COM
$s d^{n}$

$$
\begin{aligned}
\frac{1}{20} & =\left(\frac{3}{2}-1\right)\left(\frac{1}{R}+\frac{1}{R}\right) \\
\Rightarrow R & =20 \mathrm{~cm} \\
\frac{1}{f_{2}} & =\left(\frac{4}{3}-1\right)\left(\frac{1}{-20}-\frac{1}{20}\right)=\left(\frac{1}{3}\right)\left(\frac{-1}{10}\right) \\
f_{2} & =-30 \mathrm{~cm}
\end{aligned}
$$

$$
\frac{1}{f e q}=\frac{1}{40}-\frac{1}{30}+\frac{1}{40}
$$

$$
f_{e q}=60 \mathrm{~cm}
$$

If the lenses are not kept in consed: \rightarrow

Advice of $\mathrm{PAH} \rightarrow$
If the two lenses are not kept in confect then the problem con be solved by directly applying lone formula for the two lenses seperotly.

- Note special point

If the lenses's are not in ϕ cont oct than the be replaced by an equivalent lose. only if Trident day's ore coming troralel to principi
 crichton produced by loss

www.GRADESETTER.COM
(1) 5 chlole

Per Poazied Gay's

$$
8=\frac{h}{P 0}+\frac{h}{P T}
$$

whe

$$
8 \text { 801 } 8=\frac{h}{-U}+\frac{h}{v}=h\left(\frac{1}{v}-\frac{1}{U}\right)
$$

$\underset{\substack{\text { Anguch } \\ \text { deratern }}}{\delta=\frac{h}{f}}$

$$
\begin{aligned}
& \rho=\rho_{1}+\rho_{2} \\
& \frac{\rho_{1}}{\rho_{e q}}=\frac{h_{1}}{\rho_{1}}+\frac{h_{2}}{f_{2}}-\text { i' }^{\prime} \\
& \operatorname{In} \triangle A C(1) \\
& \operatorname{ten} \rho_{1} \\
& =\frac{h_{1}-h_{2}}{\rho_{2}} \text { www.GRADESETTER.COM }
\end{aligned}
$$

$$
\begin{align*}
& \frac{h_{2}}{d}=\frac{h_{1}}{d}-\frac{h_{1}}{\delta_{1}} \\
& h_{2}=h_{1}-\frac{h_{1} d}{f_{1}} \tag{2}
\end{align*}
$$

Put (2) (9) (1)

$$
\begin{aligned}
& \frac{h_{1}}{f_{e q}}=\frac{h_{1}}{f_{1}}+\frac{h_{1}}{f_{2}}-\frac{h_{1} d}{f_{1} f_{2}} \\
& \frac{1}{f_{e q}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
\end{aligned}
$$

\Longrightarrow Position of equivelent lensa-
In $\triangle B C D$

$$
\begin{aligned}
& \text { ten } \delta=\frac{h_{1}-h_{2}}{P P_{2}} \\
& \quad \frac{h_{1}}{f_{e q}}=\frac{h_{1}-h_{2}}{p P_{2}} \\
&\left.\quad \frac{p P_{2}}{}=\operatorname{feq}\left[\frac{h_{1}-h_{2}}{h_{1}}\right]=\frac{f_{e q} d}{f_{1}}\right]
\end{aligned}
$$

aratio conclusiom:-
www.GRADESEICUERCCOM

F2)

soln At method \Rightarrow
\rightarrow Tmage will be fermed at 40 cm form second lowe Foward's rigts.
Ind mothod \Rightarrow

$$
\begin{aligned}
& \frac{1}{f_{\text {eq }}}=\frac{1}{20}+\frac{1}{20}-\frac{60}{(20)(20)} \\
& f e q=-20 \mathrm{~cm}
\end{aligned}
$$

WWW．GRADESETTER．COM
\Rightarrow sheet all dore（F）Hown）
\Rightarrow Read S．H．mand wave

यदि $P P_{2}$＂$-v$＂में आर तो end lonse से lefot सें $P P_{0}$ सी आया volue पर lonse की खें। Here seq in－ve it stands that lomse is concave．

$$
\begin{aligned}
& \frac{1}{\delta_{e q}}=\frac{1}{f_{m}}-\frac{2}{f_{l}} \\
& \frac{1}{f_{e q}}=\frac{1}{-0.2}-2\left(\frac{4}{3}-1\right)\left(\frac{1}{0.4}+\frac{1}{0.4}\right)
\end{aligned}
$$

$$
\frac{\cos 28}{60 N O-24}
$$

SO7

WWW.GRADESETTER.COM
disharice

$$
\begin{aligned}
& n_{2}>n_{1}>1 \\
& \left(L_{2}\right)\left(L_{1}\right)(\text { air }) \\
& \mu_{\mu_{1}}>\mu_{2}>\mu_{1}
\end{aligned}
$$

$$
\begin{align*}
& \frac{\mu_{2}}{v^{\prime}}=\frac{\mu_{2}-\mu_{1}}{R}+(1) \tag{1}\\
& \frac{\mu_{3}}{f}-\frac{\mu_{2}}{v^{j}}=\frac{\mu_{3}-\mu_{2}}{R}-2
\end{align*}
$$

(1) $+(2)$

$$
\begin{array}{r}
\sin 45^{\circ}=\sqrt{2} \sin 2 \\
\angle 2=30^{\circ}
\end{array}
$$

$$
\frac{10514}{v}=\frac{1 \times 514-1.414}{0.4}
$$

(sichoice

$$
\begin{aligned}
& \vec{v}_{1, l}=m^{2} \vec{v}_{0 l} \\
& v_{1}=9[0.01]=0.09 \mathrm{~m} / \mathrm{sec} \\
& m>\frac{f}{f+4}=\frac{0.3}{0.3-0.4}=-9 \\
& m=\frac{v}{u} \\
& \frac{d m}{d t}=\frac{4 \cdot \frac{d w}{d t}-v \cdot \frac{d u}{d t}}{u^{a}}
\end{aligned}
$$

$$
\begin{aligned}
& v_{l l}=m^{2} v_{l l} \\
& v_{1}-V=m^{2}[-\sqrt{-}]
\end{aligned}
$$

$$
b_{2}=v\left(1-m^{2}\right)
$$

$$
\begin{aligned}
& \tan \alpha=\frac{r c}{f} \\
& r=f \tan \alpha \\
& r=f \\
& \pi r^{2} \alpha f^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{v}=\frac{1}{4} \\
& \frac{1}{f}=\frac{1}{10}+\frac{1}{10}=\frac{1}{s} \\
& f f=50 m \quad 0.005
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta f}{f}=\frac{\Delta v}{v}-\frac{\Delta u}{4} \\
& \frac{\Delta f}{2 s}=\frac{0.1}{100}+\frac{0.1}{100}=\frac{0.2}{100}
\end{aligned}
$$

$$
\Delta f=\frac{S}{100}=0.05 \quad \text { An . }
$$

(st choice)

$$
\begin{gathered}
120-2 r=\frac{1}{J}[60-r+180-2 r+60-x] \\
r=30 \\
\sin 60=\mu \sin 30 \\
\mu=\sqrt{3} .
\end{gathered}
$$

$6 x_{2}+3$
QNo>e

$$
\frac{u}{v^{1}}+\frac{1}{2 R}=\frac{u-1}{R} \text { (1) }
$$

$$
v^{\prime}=?
$$

(st Choice

$$
\begin{aligned}
& \frac{1}{f_{e q}}=\frac{1}{20}-\frac{1}{8}+\frac{6}{20(8)} \\
& \frac{1}{f_{e q}} \Rightarrow \frac{1}{20}-\frac{1}{8}+\frac{6}{160} \\
& f_{e q}=\frac{-80}{J}
\end{aligned}
$$

WWW.GRADESETTER.COM

(sstchorese

$$
\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}
$$

E29 ONOP 10

$$
\begin{gathered}
\frac{1}{f_{1}}=(1.4 .-1)\left(\frac{1}{20}\right)=\frac{0.4}{20} \\
\left.f_{1}=500 \mathrm{~m}\right) \\
\frac{1}{f_{2}}=(1.5-1)\left(\frac{1}{20}\right)=\frac{0.5}{20} \\
f_{2}=40 \mathrm{~cm}
\end{gathered}
$$

for socond forselt

$$
\begin{aligned}
& 4=50 \mathrm{~cm} \\
& \hat{f}_{2} 40 \mathrm{~cm} \\
& v_{2}=?
\end{aligned}
$$

Parsage ist

optical device that is usel to increase
the fiels of riew mienification power ans
reodving poroce of the eye is calles ortical instrument
The final imoge fermes by an insioument in iritual

* mognification power1-

$$
m \cdot P=\frac{\text { biels angle made by final imoge on the eye }}{\text { max }^{m} \text { fiell analo }}
$$ max i^{m} fiels angle mode by abject on the ges 9 dear vision?

$$
=\frac{\nabla^{\prime}}{\alpha} \approx \frac{\tan \sqrt{s}}{\tan \alpha}
$$

* Simple microscopel-

(st choice
* $m \cdot P_{\min }=\infty<v \rightarrow \infty$
far point afjustment nermal affust a porallel affestment, unetraines atf ust
\qquad

$$
\text { m. } P_{\text {min }}=\text { m. Pfar }=\frac{D}{f}
$$

∞

$$
\text { m. } P_{\text {war }}=\angle N=0
$$

near point streunes atius tment

$$
m \cdot P_{\text {max }}=1+\frac{D}{f}
$$

Note:-In magnifiecetion
sign conventon

(11) Compound microscupel-

When two or more lens are wied in a syjternthen Besultant mognificaton is the Prodrext af the mognificaton predecced ls medran Dndinitur lem. eyedeny

$$
\mathrm{m}_{\mathrm{m}} \mathrm{P}_{\text {max }}=\mathrm{m} \cdot \mathrm{P}_{\text {(near foime })}=-\frac{v_{0}}{u_{0}}\left(1+\frac{x}{\sqrt{e}}\right)
$$

$$
\text { M.P } P_{m A}=m \cdot p_{\left(f a_{i} \operatorname{point}\right)}=-\frac{v_{0}}{u_{0}} \frac{D}{\delta c}
$$

fength of Jube: -
$L=$ Distance eb/w eyepice ans objectre cers.
(1)

$$
\begin{aligned}
L & =\left|v_{0}\right|+\mid \text { wue } \mid \\
& =\left|V_{0}\right|+\left|\frac{v_{e} t_{e}}{v_{e}+f_{e}}\right|
\end{aligned}
$$

(ii) for near point $\left(v_{e}=0\right)$

$$
L_{\text {near }}=v_{0}\left|\frac{D f_{e}}{D+f_{e}}\right|
$$

(1i1) for far pont $\left(V_{e} \rightarrow \infty, u_{e}=t_{e}\right)$

$$
\text { ffar }=\left|r_{0}\right|+\mid \text { te } \mid
$$

special Caqe 1-
If $u_{0} \approx F_{0}$ then $n_{0}>\mu_{e}$

$$
\therefore V_{0} \approx L
$$

for far points-

$$
\|_{\text {M.P }}^{\text {ffar }}=\frac{-L}{f_{0}} \times \frac{D}{h_{\text {New }}}
$$

WWW.GRADESETTER.COM
(st chote
Nater- Resoling power:a1-

$$
R \cdot \frac{2 \mu \sin \theta}{\lambda} \propto \frac{1}{\lambda}
$$

(3) Astronomical telecoope:-
Astronomical telecoope:

$$
m \cdot p=\frac{\tan B}{\tan \alpha}=\frac{-A^{\prime} B^{\prime}}{-\mu_{e}} \times \frac{F_{0}}{-A^{\prime} B^{\prime}}=\frac{-F_{0}^{\prime}}{U_{e}}=\frac{-F_{0}}{D} \times \frac{-D}{4_{e}}
$$

$$
M_{\text {mam }}=m_{1} p_{\text {(nearpoint }}=-\frac{F_{0}}{D} \times\left(1+\frac{p}{d_{c}}\right)
$$

(Ai) $\sqrt{m \cdot p_{\text {man }}}=m_{1} p\left(f a r-a_{n}\right]=\frac{-F_{0}}{D} \times \frac{D}{f_{e}}=\frac{-f_{0}}{f_{e}}$

* fergth of fube:-

$$
L=\left|F_{0}\right|+\left|\mu_{e}\right|
$$

(ii) for near point $=\left(V_{e}=0\right)$

$$
L_{\text {near }}=\left|F_{0}\right|+\left|\frac{D f_{e}}{D+f_{e}}\right|
$$

(iii) fer far point $\left(V_{e} \rightarrow \infty\right)$

$$
L_{\text {far }}=\mid \text { Fo }|+| \text { te } \mid
$$

(4) Telescope ar terrestrial telescopes-

$$
M \cdot P_{f_{a r}}=\frac{f_{0}}{f_{e}}, \quad L_{\text {far }} \geq f_{0}+f_{e}+\mu_{f}
$$

when the two wave af the Rome frequorey travel due to same direction (ar nearly scam direction) the Intrusits becomes maximum ware de at some position it become n min. the re-distributon of onengy in called as interference (लनतिकरणए)

$$
\begin{aligned}
& y_{1}=A_{1} \sin (\cot -k x) \\
& y_{2}=A_{2} \sin (\cot -k x+\phi) \\
& \phi: \rightarrow \text { Phase difference } \\
& y=y_{1}+y_{2} \\
& y=A_{1} \sin (\cos t-k x)+A_{2} \sin (\cot -k n+\phi) \\
& y=\operatorname{Aros}(\cot -t x+\rho)
\end{aligned}
$$

$$
A_{\text {res }}=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi}
$$

(s) chalice

Intensity a (Amplitude) ${ }^{2}$
Let It one Io be the intensity of two uso,

$$
T_{e_{0}}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi
$$

Porconstructive Dintuflepar- Fer destructive intaberanco

* Ares and Tee should be * mes and Tres should be man * $\phi=1$
* $\phi=2 n \pi$
* $\cos \phi=-1$

$$
* \phi=(2 n-1) \pi
$$

$$
n=1,2,3 \ldots
$$

$$
\begin{aligned}
n & =1,213-A_{n} \\
* A_{m n} & =\left|A_{1}-A_{2}\right| \because \text { का की, }
\end{aligned}
$$

Fright fringe form

$$
* I_{\text {min }}=\left(\sqrt{D_{1}}-\sqrt{D_{2}}\right)^{2}=0
$$

होता हैं।

- The ratio of Amplitude of two waves in $2: 3$ find out the ratio of
i) mon ito min resultant Amplitude
ii) maxi to min. roxubtant Intensity
a) $\frac{A_{\text {max }}}{A_{\text {man }}}=\frac{A_{1}+A_{2}}{A_{1}-A_{2}}=\frac{\frac{A_{1}}{A_{2}}+1}{\frac{A_{1}}{A_{2}}-1} \quad \because \frac{A_{1}}{A_{2}}=\frac{2}{3}$

WWW.GRADESETTER.COM

$$
n= \pm 1, \pm 2,
$$

Note \Rightarrow
I) If sources are cohcosint \rightarrow

$$
T_{r e s}=T_{1}+T_{2}+2 \sqrt{D_{1} D_{2}} \cos \phi
$$

Ih souncs are in-cohecaints
(1shonoree) Interference of light
Doing's double git Exp-(y DIE $) \Leftrightarrow$ downy proved experimentally through sis young double flit Experiment that light could proxies's Dotefere patten. So we con say light o on having the ware nature.
(Huygens ware theory \Rightarrow
wave front 1- wave fluent is a locus af all the point which are vibrecting in the same phone.

Depending upon the source of light threetypen of wemefrem are defined $s \rightarrow$ sis spherical wave front \Rightarrow

If senfore af light is a point source.

- Cylindrical ware freest

3.) Plana wanebienl-

Planar warefstent \Rightarrow
If the source of light (eithe point or line') Lon away thon any smalle secton of either spterical or cyclindrical can be co as a Planen wave frunt

Fer ang ware fuint the direction of propaga of werne in perpondicula to the suse - of wanefrest.

WWW.GRADESETTER.COM

As penthe Hygen's theory $1 \rightarrow$

1) The point present on the surface behaves like the sounce of now disterbunce as shrion in the figme which are called as Reconchary coaroles.
2) The new porition of the uearefuint combe gown with the help of ous onvelope.
(8) Prosf the sicll's leve as penthe hygenis theory \Rightarrow :

$A B \Rightarrow$ Incidont planeer ware funt
$C D \Rightarrow$ Reforited plaman wanfent:

WWW.GRAMESSETER.COM

$$
\begin{aligned}
& \sin r=\frac{A D}{A C}=\frac{v_{2} t}{G A C} \\
& \frac{\sin \dot{\theta}}{\sin r}=\frac{v_{1}}{v_{2}}=\frac{C / l_{1}}{C / l_{2}}=\frac{l_{2}}{\mu_{1}}=\text { Constant }
\end{aligned}
$$

Note \rightarrow
Thephare difference b/w any vo poise on a wavefront is zOO
became light from she sources reaches envy point aft the wavefront at th same time.
proef if laue af reflecton as pen the Hugen's ti

$A B \Rightarrow$ Thcidond Plana wavefunt
$C D \Rightarrow$ Refracted plonan warofint.

$$
\begin{aligned}
& \angle A B C=\angle A D C \\
& B C=A D \\
& A C=A C \quad(\text { common })
\end{aligned}
$$

$\triangle A B C$ and $\triangle D C D A$ are congruent

$$
\begin{aligned}
& \angle B A C=\angle D C A \\
& \Rightarrow \angle i=\angle r_{2}
\end{aligned}
$$

 double slit that light could or Interference so the warenatere of lighter Intefferexer through this experiment. Co
(storm) Young

Essential condition's for the Interference

1) The phase difference tho the two beams shout remain constant because othownic if Phase diffo (ϕ) in veviable than at given point intensity will co continuously change.
*) The sources which are used to mantas the Constant phase differ A_{2} are called as cahearent sources.

iii)

$$
\begin{aligned}
& A_{1}=A_{2} \\
& I_{1}=A_{2}
\end{aligned}
$$

$$
\overrightarrow{I I / H / H} \rightarrow
$$

It in not necersory that the complitecte of two wave's should the, same but if it is same than urecan obrab a bate contreesf on the screen.

S_{1} and $\mathrm{S}_{2} \Rightarrow$ slit
Ss source of light

$$
\begin{aligned}
& \text { TIUSW, work } \\
& \rightarrow \text { bligh } \Rightarrow \text { souk } \\
& \rightarrow \text { Bright }
\end{aligned}
$$

por constructive Interforence

$$
\begin{gathered}
\text { Cental Inight fringe } \\
y=0
\end{gathered}
$$

$$
y=0
$$

Posidon of anes nith order menoma any nith odo brig
 fringe.

- Fe destructive Intufferonce

$$
\begin{aligned}
& \frac{y \alpha}{D}=(2 n-1) \frac{\lambda}{2} \\
& y=\frac{(2 n-1) \lambda D}{2 d}+\left(\frac{2 n-1}{2}\right) \cdot T \\
& \text { where, } n=1,2,3, \cdots
\end{aligned}
$$

Dosition af

$$
\begin{aligned}
& \frac{y d}{D}=n \lambda \\
& \text { पै3 nish } x 5 \\
& y=\frac{n \lambda D}{d}\{=n \cdot B \\
& \text { where, } n=0,1,2, \ldots \\
& y=\frac{\lambda D}{\alpha}, \frac{2 \lambda p}{\alpha}, \frac{\exists \lambda p}{\alpha} \cdots \cdots
\end{aligned}
$$

(sse choice

$$
\begin{aligned}
& \text { In } \triangle D S E= \\
& \Rightarrow I_{1}=I_{2}=I_{0} \\
& I_{\text {er }}=I_{0}+I_{0}+2 I_{0} \cos \phi \\
& I_{\text {res }}=2 I_{0}(1+\cos \phi) \\
& I_{\text {mes }}=4 I_{0} \cos ^{2}\left(\frac{\phi}{2}\right) \\
& \\
& I_{\text {man }}=4 I_{0} \\
& A I_{\text {min }}=0 \\
& \Rightarrow A_{1}=A_{2}=A_{0}
\end{aligned}
$$

$$
\begin{aligned}
A_{r e s} & =\sqrt{A_{0}^{2}+A_{0}^{2}+2 A_{0}^{2} \cos \phi} \\
& =\sqrt{2 A_{0}^{2}(1+\cos \phi)}
\end{aligned}
$$

$$
\text { Ares }=2 A_{0} \cos \left(\frac{\phi}{2}\right)
$$

$A_{\text {max }}=2 A_{0}$
$\rightarrow A_{\text {mun }}=0$

\square

$$
y=\frac{-J \lambda D}{2 d} \text { (and oade dond }
$$

$$
\begin{array}{r}
y_{2}-\frac{2 \lambda d}{\alpha}\left(\begin{array}{c}
\text { and ond } \\
\text { tright find }
\end{array}\right. \\
\\
\sim=\ldots
\end{array}
$$

नीट $ग \rightarrow$ धानदे
 रेथ है।
(st choice)
In IDSE the wavelength af lin $5000 A^{\circ}, \quad D=2 \mathrm{~m}, \mathrm{~d} D$ Prom and ant out the seperation b/w isth bright any It dork fringe
a) on the fame gide
e) or the opposite side

$$
\begin{aligned}
& y_{p}=\frac{8 \lambda D}{(\operatorname{don} g t)}=8 x \\
& \frac{y_{11}}{(\text { dak })}=\frac{21 \lambda p}{2 \alpha}
\end{aligned}
$$

a) on same side

$$
\begin{aligned}
\text { sepection } & \rightarrow\left(\frac{21}{2}-8\right) \frac{\lambda(p}{\alpha} \\
& =\frac{5}{2} \times \frac{5 \times 10 \times 2}{10^{-2}} \mathrm{~m}
\end{aligned}
$$

$$
=
$$

b) on opposite gide

$$
\text { Sepeaton }=\frac{37}{2} \frac{\lambda D}{d}=
$$

ample
Th Nose the De
their point in $\pi / 3$
b) The pout diff b/w the two beam's reaching at this point in $\geqslant / 2$

82
a)

$$
\begin{aligned}
D_{r e s} & =4 I_{0} \cos ^{2}\left(\frac{\phi}{2}\right) \\
& =4 I_{0} \cos ^{2}(\pi / 6) \\
& =\$ D_{0}(\sqrt{3})^{2} \\
& =3 \mathscr{D}_{0}
\end{aligned}
$$

b) Path diff $=\lambda / a$
phase diff $=\frac{2 \pi}{\lambda}(\lambda / 2)=\pi$

$$
\begin{gathered}
\text { (1) } 24 \cos _{0} \cos (\pi / 2) \\
=0
\end{gathered}
$$

Ex 3) The Dinteristy of the eats in $X D S E$ is "ID" Find out the position e\& neat point where the resultant Intansidy becomes

$$
\frac{\text { a) } T_{0}}{\text { b) } 3 D_{0}}
$$

sold $[\hat{\lambda}, 7, \alpha$ are gina $]$
a)

$$
\begin{aligned}
& I_{0}=+I_{0} \cos ^{2}\left(\frac{\phi}{2}\right) \\
& \cos ^{2}(\phi)=\frac{1}{4} \\
& \cos \left(\frac{\varphi}{2}\right)=\frac{1}{2} \\
& \frac{\phi}{2}=\frac{\pi}{3} \\
& \phi 2 \frac{2 \pi}{2} \\
& \text { Port diff } 2 \frac{\lambda}{2 \pi} \cdot\left(\frac{2 n}{3}\right) \geq \frac{\lambda}{3}=\frac{y d}{D} \\
& y=\frac{\lambda P}{3 \alpha}
\end{aligned}
$$

b) $y=\frac{\lambda x}{6 d}$

WWM. GRADESETTER.COM
$\phi=0$.

$$
\left.\begin{aligned}
& D 24 \lambda \\
& \frac{n \lambda \neq}{d+}+\frac{n \lambda \not D}{\alpha} \\
& n_{1}=
\end{aligned} \right\rvert\,
$$

8

$$
\begin{aligned}
& \begin{array}{l}
\text { d } 25 \\
\text { a } 101
\end{array} \\
& \begin{array}{l}
402 \\
0
\end{array} \\
& \lambda \\
& \Rightarrow \frac{(2 n-1) x^{2}}{d} \Rightarrow \frac{\lambda \times 12}{5} \\
& \rightarrow \text { ? } \\
& 7 \\
& \Rightarrow \lambda 2 \frac{s}{15} \\
& \frac{3 x \not x}{x} \\
& \frac{31 / A}{2 \alpha}=\frac{3 x D x}{2 \sigma}
\end{aligned}
$$

Frindge width (∇)

$$
\begin{gathered}
\beta=\frac{(n+1) \lambda D}{\alpha}=\frac{n \lambda p}{d} \\
\sqrt{\beta=\frac{\lambda P}{\alpha}}
\end{gathered}
$$

Finhg, wifth is the serercton b/w eithe two conseculne manima of two conseahme monima.
and it is directly proportond to wavelongth af the Eight used

$$
\forall \beta \alpha
$$

जोटन्न
1)

In N.D.s. I apporatus è immersed in a liqui) af refroctine inden ""l", then waretength af ligk and "Inndge width deeveases "il" time. abtained on the sereen with sed then thet then of

What happen's
if. $V D S E$
is
a eliquid

$$
\begin{gathered}
y=\frac{n \lambda D}{d} \\
y_{n}=\frac{(2 n-1) \lambda D}{2 d} \\
P 1 \frac{\lambda D}{\alpha}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\mu=\frac{\lambda_{\text {air }}}{j_{\text {mes }}}\right.} \\
& {\left[\lambda_{\text {med }}+\frac{\lambda_{\text {ar }}}{\mu}\right.}
\end{aligned}
$$

If YDSE setup i Dmmersed en a lequid ponton of contral maxma doen neet Chorget but beccure is the medium warelo af light deerecre so fnndge width ih deereare.

Herce on a given sect on of sc mere Nember of frindge will be ofteined
(stachoice
If $\triangle D S E$ in Peffre in ar tha 2t Inght fri ei formed on a given seep haning $l_{2} \frac{3}{2}$. than Hore moy finght fondge farmed on the comesiep

$$
\begin{aligned}
& \frac{n x^{2 a}}{\not 2}=\frac{n \not x+x \times 3}{4 x} \\
& \frac{8}{\frac{8}{5} \times 4}=n
\end{aligned}
$$

n(2) Jon の 22
length of screm $224\left(\frac{\partial_{\text {our }} D}{\alpha}\right)$

$$
11 \quad 11 \quad 1 \quad 2 n\left(\frac{\partial_{\text {wate }} p}{d}\right)
$$

24 गair $2 n$ गेwect

If $\triangle D S E$ is perpsed en a liquit tha therd Hork fringe, ei of tanes of the some position whe 2At one force fringe was ofteused initivally second unght

Inden af then en voecom find out seffer

Tear

$$
\begin{aligned}
& y=\frac{2 \operatorname{sear} \Phi}{\alpha}=\frac{S \lambda_{m o d} \Phi}{2 R} \\
& \frac{\lambda_{\text {air }}}{\lambda_{m a f}} 2 \frac{s}{4}=川
\end{aligned}
$$

W) What happens if morethon one wavelength ${ }^{3}$ are used in $X D S G:$
Here the cental maxima corresponding to diff wavelengths will be obtained at tho some position

If whit light a used in YD RE thor fringe width will be diff e for diff color if will he man. for red colon one miner for violet colocest

$$
\begin{aligned}
& y=\frac{n \frac{\lambda}{\alpha}}{} \\
& \nabla>=\frac{\lambda p}{\alpha}
\end{aligned}
$$

1) Two differ un sore used in VDSE

$$
\begin{aligned}
& 0_{1} 25200 A^{\circ} \\
& 3026500 A
\end{aligned}
$$

fint out the position nearent to aextal marimal where the manimot the wa cexpal marima both the wavelenimp
correxpondeng to bits, Insith
co-.

801

$$
\begin{aligned}
& \frac{n_{1} \lambda_{1} \not x}{\alpha}=\frac{n_{2} \lambda_{2} \not x}{d x} \\
& \frac{n_{1}}{n_{2}}=\frac{65}{52} \\
& \frac{n_{1}}{n_{2}}<\frac{6 s}{5 x} 5 \\
& \hline 1
\end{aligned}
$$

cea la

$$
\begin{aligned}
& y=\frac{n_{1}\left(5200 \times 10^{-10}\right) 2}{\left.10^{-}\right]}=n,\left(6500 \times 10^{-10}\right]^{-3} \\
& \frac{n}{n} 25 \\
& n_{2} 24
\end{aligned}
$$

$$
y=\frac{8 x-52 \times 10}{10^{2}}+2
$$

$25410^{4} m$

$$
A_{1} 2 \leq 600
$$

$$
\theta_{2}=40
$$

$$
\text { (1) } 20.1 \mathrm{~mm}
$$

$$
\alpha<10^{3} \mathrm{mn} 21 \mathrm{~m}
$$

(2) का $5=60$

$$
\left(2 n_{1}+1\right) 56 \phi=(2 n 2-1) 40 \phi
$$

$$
\frac{\left(2 n_{1}-1\right)}{2 n-1}=\frac{70}{50}=\frac{7}{50} \times \frac{3}{7}=\frac{21}{18}
$$

(st Choice
Nate \Rightarrow
If white light is uned in a toung's double ship expermont than:-

$$
\because \beta=\frac{\lambda D}{d}
$$

A) bright white fringge in farned at the contre of the screan
(1) Irndge of drffecolocistane obserad atealy only in the hist arde.
c) the firm-arbo violet firiges are cloigen to the conte af the eentre of the sceren than the firft orde sed frinalge.

What happens if a glass stab ind is kep ling in of the slit in VISE \rightarrow
op tical path log he at pro long optical Doth length of glass slab \rightarrow

The distance of lon
Optical path length \Rightarrow D
The edtical path length of any glass slab is defined as the distance travelled boy the light enciry In the some time Interval which has been taken to In e travel's through the glans sloop of when bor ben taker to tracts through

Sect of light en olav flab $=\frac{C}{M}$
opstical os porth length $=\left(\frac{\mu c t}{c}\right)$ ers

$$
\text { fr } \text { optical path didfl }=(\text { ur-1) } h
$$

Na Geometrical optcolilfz $\frac{y d}{D}$
Yo $\frac{y d}{D}=(l-t) t$

4

$\mathrm{NOH} \rightarrow$

Hese the complede rabten

$$
y=\frac{n \lambda D}{d}
$$

and of any dork frindge frindge ii given by

$$
y=\frac{(2 n-1) \lambda D}{d}
$$

fut there sepections are measured for new position of central marina,
iii) If the glens stab in taps import of upper stint then cental maxima shift upward ans of kara en
Q) Aglas olaf having A.D int Uses U2 I_{2} in kent on font of upper ships so that the cental ma ii obteumed at the same position where Dnitures that fright frigh was oftainet, $\lambda 25000$

80

86%

APESETTER -OM

Dest
Df glas plat are kept einfront of ba:th
The

(1) If $(4,-1) t_{1}>(\mu,-1) \ell_{2}$

The cental manoma shoff upisead

$$
\frac{\sqrt{\left.\left.\frac{1}{[} \mu_{1}-1\right) \cdot \mu_{1}-\left(\mu_{2}-1\right) t_{2}\right]}=\frac{y d}{D}}{\delta_{0}}+\frac{y_{2} \quad\left[\left(\mu_{1}+1\right) k_{1}-\left(\mu_{2}-1\right)_{2}\right] \frac{D}{d}}{}
$$

WWW.GRADESETTER.COM
9.) If $\left(\mu_{1}-1\right) t_{1}<\left(\mu_{2}-1\right) t_{a}$

The eentral marima shit docinwadis.

$$
\left.y=\left[\left(\ell_{2},-1\right) \ell_{2}-\left(\mu_{1},-1\right) \ell_{1}\right] \frac{d}{d}\right]
$$

3) if $\left(\mu_{1}, 1\right) A_{1}=\left(\mu_{2}-1\right) A_{2}$

The central marima doen not shift en

$$
y=0
$$

In the figure shown the cextral maro:obtained at the some position Duitially 4 th trindger was oftarret. find out thicknons of eochs

WWW.GRADESETTER.COM
(st Choice)

$$
\begin{aligned}
& 0.34 \frac{7 x 5000}{2} \\
& \text { \& } 2 \frac{7 x 5000 \times 10}{0.3 \times 2} \\
& \text { u } \frac{35 \times 10.000}{3 \times 2} \\
& =\frac{1 \% 6 \times 10}{\frac{1.16 \times 105}{2}} \Rightarrow \frac{35}{6} \times 10^{4} \mathrm{~A}^{0} \\
& =\frac{35}{6} \times 10^{4} \times 10^{-10} \mathrm{~m} \\
& 2 \frac{75}{6} \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

Whet happen's it
unsymetrically sounce of light

$$
3 \text { is ker or }
$$

$$
\begin{aligned}
& f s_{1}-g \rho_{2}=\frac{y_{1} d}{p_{1}} \\
& \frac{s_{2} p-s, p-\frac{y_{2} d}{D_{2}}}{D_{1}}=\frac{y_{2} d}{\rho_{2}} \\
& y_{2}=\frac{y_{1} D_{2}}{D_{1}} \text { (formila) }
\end{aligned}
$$

WWW.GRADESETTER.COM
(st Choice

世 $\mathrm{AJ} \rightarrow 2$

-3 \qquad

$$
y_{2}=\frac{y_{1} \Phi_{2}}{D_{1}} \quad \frac{5004 \times 001}{2}=
$$

$$
\begin{aligned}
& \Rightarrow \frac{y_{1} d}{D}=\left(\mu_{1}-1\right) \sqrt{10^{-2}+16 \times 10^{-8}} \\
& \Rightarrow \frac{0.4 \times 18 \times 10^{-4}}{2}=(\mu,-1) \sqrt{10^{-2}+\left(16 \times 10^{-8}\right)} \\
& \Rightarrow \quad \mu=1.0196 \quad \text { of }
\end{aligned}
$$

Leloyd's mirror

1) If the reflection in taking ploce from the bound of conser medium than an entre phase differance of " π " is inhrodereg dure to reflectan alvo Entrobeed.
2) Whare if the reffecton is taking fa' the bocendry of ranen mediem then ? phare diffor is tatern
(st choice)

If

$$
s^{\prime} P-s P=(2 n-1) \frac{\lambda}{2}
$$

EConstruetre inteferas mocour dry if sed ज़ा है। है।

Findge width $=\frac{\lambda P}{\alpha}$

Gromehreal Dath diff $=(\operatorname{Cotop})$

$$
\cos \theta=\frac{d}{O P} \Rightarrow O p=\frac{d}{\operatorname{con} \theta}
$$

Findge wadth:,

$$
\begin{aligned}
\nabla & =\frac{\partial p}{\alpha} \\
& =\frac{3 \times 10^{8}}{6 \times 10^{14}} \times \frac{2}{0^{2} 2 \times 10^{-2}} \\
& =5 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

$$
4
$$

यदि $N o n o l$ dak In trink frinde निकालना हो तो
के " 2 " पे चागे से है।

Total no of frindg $=\frac{2 \times 10^{-2} m}{5 \times 10^{-4} \mathrm{~m}}=\frac{\text { longthat AD }}{\text { Iniog }}$

$$
=40
$$

\rightarrow Por nomal pruidonle

$$
\text { Path deff (1) and (2) } / \text { e/w (3) and (3) }=2 l l \text { t }
$$

4 For Reflected beam $1 \rightarrow$

$$
\begin{aligned}
& \text { If 2let }=n \lambda \quad(\text { Destruetre inte. }) \\
& \text { eff 2let }=(2 n-1) \frac{\lambda}{a} \quad \text { Conshr }
\end{aligned}
$$

Por transmilted feam \rightarrow
If 2let $=n \lambda \quad$ (const. Int)

$$
\text { ef } \text { 2ut }=(2 n-1) \hat{1} \text { onw.GRADESE (Det. Dnt })
$$

WWW.GRADESEITER.COM

Note -
If eithe in the replected ar itrammetted beam any wavelergoth in found so lo misting. then conlection of wai wareatert Dute

be eithe strongtox reflected or soorgtho sanmitted shonly the continon of consto tansmitted shom the contition of constredte Infiferne shoult be satipgied for this wavelength.

$$
\mu 21,6
$$

$$
\text { elet } 2 n x
$$

$$
\mu=\frac{\pi x}{2 t}
$$

$$
3 2 \longdiv { 3 5 9 0 }
$$

$$
\frac{150) \cdot \frac{412}{2 t}}{24}=1.6
$$

$$
t=\frac{43210}{3.2}
$$

$$
A \sqrt{\mu=1-6}
$$

$$
\text { mishing } \Rightarrow
$$

$$
120,1
$$

$$
432 \mathrm{~nm}
$$

$$
540 \mathrm{~nm}
$$

$$
2 \times 1.6 \times t=i_{18}^{n_{1}}(120)={\underset{i}{1}}_{n_{2}}^{n_{2}}(432)=n_{2}^{n} 540
$$

$$
A 2 \frac{18 \times 120}{72}=675 \mathrm{~m}
$$

$$
2 \times 1.6 \times 675=2160=(\text { ons }) \frac{\lambda}{2}
$$

Fresnel Diprism \rightarrow

Givanus μ, A, a, ϕ

$$
\begin{aligned}
& 8=(\mu-1) A=\frac{d}{2 a} \\
& d=2 a(\mu-1) A
\end{aligned}
$$

frindge with $\quad \beta=\frac{\lambda D}{d}$

$$
\text { sur } p=\frac{\lambda(a+b)}{2 a(\mu-1) A}
$$

xdeter

$$
\begin{aligned}
& I_{\text {man }}=4 D_{0} \\
& \text { Now glas slab ì kepf } \rightarrow \\
& I_{1}=\frac{X_{0}}{R}, \quad D_{2}=D_{0} \\
& \operatorname{Iman} 2\left(\sqrt{R_{0}}+\sqrt{\frac{R_{0}}{2}}\right)^{2}=\cdots \\
& \operatorname{Immin}^{2}\left(\sqrt{I_{0}}-\sqrt{\frac{D_{0}}{2}}\right)^{2}=
\end{aligned}
$$

Dak का कुब्य प्रकाश बदेगा तथा to srigh का जुल जहिगा।

$$
\begin{aligned}
g_{1} B & =10 \lambda \\
& =10 \times 6000 \mathrm{~h} \\
& =6 \times 10^{4} \times 10^{10} \mathrm{~m}
\end{aligned}
$$

$26 x 10^{-6}$ WANY.GRADESETTER.COM

WWW.GRADESETTER.COM
static

optical pooh length af snell element = (
total optical path lorgth=

$$
=\ell t
$$

Optical path diff $=\frac{l+a l^{2}}{2}-l$

$$
=\frac{a l^{2}}{2}=\frac{\lambda}{2}
$$

x浬在
$E x=2$

$$
\begin{aligned}
& I_{\text {man }}=4 D_{0}, \quad D_{\text {man }} \geq 0 \\
& \text { Now glas } 8 \text { lab an kept } \rightarrow D_{2}=D_{0} \\
& \left.I_{1}=\frac{I_{0}}{2}, \sqrt{\frac{D_{0}}{2}}\right)^{2}= \\
& I_{\text {man }}=\left(\sqrt{D_{0}}+\sqrt{\frac{D_{0}}{2}}\right)^{2}=
\end{aligned}
$$

(1)ak का कुज्य प्रकाश बदेगा तथा for fight का कुल पहेगा।

$$
\begin{aligned}
\rho_{1} B= & 10 \lambda \\
= & 10 \times 6000 \mathrm{~m} \\
& =6 \times 10^{4} \times 10^{-16} \mathrm{~m} \\
& 26 \times 10^{-6 \mathrm{~m}}
\end{aligned}
$$

WWW.GRADESETTER.COM

optical path length af snell element $=(1 \mathrm{pm})$ total optical path lorgth $=\int_{0}^{1}$

$$
=1 t
$$

$$
\text { Optical path diff }=\frac{l+\frac{a l^{2}}{2}-l}{}=\frac{a l^{2}}{2}=\frac{\lambda}{2}
$$

WWW.GRADÉSETTER.COM
ret I_{1} ond D_{2} be the Intands of $2 \operatorname{coo}$

$$
\frac{T_{\text {man }}}{D_{\text {man }}}=a-\left(\frac{\sqrt{R_{1}}+\sqrt{R_{2}}}{\sqrt{R_{1}}-\sqrt{R_{2}}}\right)^{2}
$$

$$
\frac{\sqrt{\frac{D_{1}}{I_{2}}+1}}{\sqrt{1}}=7
$$

$$
\begin{aligned}
& \text { (actact } \\
& \xrightarrow{ } \begin{array}{l|l|l|l|l}
& & & & \\
& \text { स्ट } & & & \\
&
\end{array}
\end{aligned}
$$

WWW.GRADESETTER.COM
st choice
for storgle reflepted

1.5
$3 t=$

$$
j
$$

WWW.GRADESETTER.COM

$$
\begin{aligned}
& \lambda_{1}=400 \mathrm{~A}, \lambda_{2}=5600 \mathrm{kO} \\
& \frac{(2 n-1) \frac{4000 x D}{\alpha}=\frac{\left(2 n_{2}-1\right) 5000 \times 0 D}{2}}{\frac{\left(2 n_{1}-1\right)}{2 n_{2}-1}=7 / 3} \\
& n_{1}=4 R / \sqrt{n_{2} 29}
\end{aligned}
$$

$$
\text { No of loges }=\frac{\left(\mu_{1}+1\right)+D}{\frac{\alpha}{V}}
$$

$$
\begin{aligned}
& 3 \times \cos \theta=2 \lambda \\
& \cos \theta=\frac{2}{3} \\
& \tan \theta=\frac{\sqrt{5}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{D}=\frac{\sqrt{5}}{2} \\
& x=\frac{D \sqrt{5}}{2}
\end{aligned}
$$

\square
17)

$s_{2} / \frac{\pi_{8}}{2}$
If $z=\frac{\lambda D}{2 d}$, then $I_{p}+4 D$
Df $z=\frac{2 x p}{\alpha}$ tha $D p y$
Path \quad deff $=\frac{\lambda D}{d} \times \frac{\alpha}{d} \perp \frac{\lambda}{4}$
Phare duff $2 \frac{2 \pi}{\lambda}\left(\frac{\lambda}{4}\right) 2 \pi / 2$
Do 2 \&PCot $\left(\frac{\pi}{4}\right)$
$P=20$ www.GRADESETTER.COM

$$
\left.\frac{2 \times 1 \cdot s \times t}{\left\lvert\, t=\frac{\lambda}{3}\right.} \right\rvert\,
$$

seen
(Tochoree Photo electric effect

Bs light in having porkel an well on wave nature. the particle note of the light can be proved - by the phenomen like photo selectee effect.
2) light in having small onengy packet's will are called on photons ant there photons travel with the same speed as that af eight.
Hooch photon is having definite amount of energy and momentum \qquad

$$
\text { Fragy of } p h o\left(o n(E) \quad E=h \gamma=\frac{h c}{\lambda}=\frac{184 h}{\phi}\right. \text {. }
$$

$$
\text { whetter } \quad{ }^{2} h e^{i}=1240\left(e_{N}-\mathrm{hm}\right)
$$

$$
h=\text { plank's constant }
$$

$$
10 \mathrm{v}=1.6 \times 10^{-19} \mathrm{~J}
$$

$$
\begin{aligned}
& =6.6 \times 10^{-34} \mathrm{~J}-8 c e \\
& \gamma \rightarrow \text { frequoney of light }
\end{aligned}
$$

momenternaf photon, $P=\frac{h}{\lambda}=\frac{E}{C}$

whereas mascef a moving photon ion

$$
m=h \nu
$$

eample A sounce of light having powe 200 wott is emilting 4×10^{20} arotoris/sec: fond oin
$P=900100$ lt

$$
\begin{gathered}
200=4 \times 10^{20} \times \frac{h c}{x} \\
900=4 \times 10^{20} \times \frac{6.6 \times 10^{-24} \times 3 \times 10^{8}}{\lambda} \\
\rho=3.96 \times 10^{7} \mathrm{~m}
\end{gathered}
$$

Sheto electre effects \sim
when the light having
magy fall's on the scrpoc af a metal that han e^{-}con le ejjectes oect.

Thei phonomon is calles as "photodect
 "photo elcespon's."

$$
\text { function (d) }=\frac{1242}{\lambda} \frac{f}{1}
$$

is the min. amouich of energy which phe neident photons must hane so the
in of "er". con reke Place.
It depend's upon the matehe aff the

