WWW.GRADESETTER.COM
\qquad
\qquad
\qquad
\qquad
\qquad
(1) Applicaton

NTTD/ FTD/TFTD/ Telict Suros,
(i) Preartar
(iii) senion
(iir) Transont UDD, TCP
(v) Neturk logs

$$
+10
$$

$A R D$
(v) sat

framming:-
(N) physiact lajesबity synchorm: -
\Rightarrow Netwon Securty
Private la/ publieke
syrnomedr/aon synnet
ESA sibfe
modula.

* What is netwask
\rightarrow Netuak onean's interconnectien?
1 In infarmation technobgy, a noteconde is a serien of points or nodes interconnectel by communieation path.

WWW.GRADESETTER.COM

WWW.GRADESETTER.COM

\qquad

बत्तazo

$T L D \rightarrow$ tor level domain

\Rightarrow (ANC) \rightarrow Apricaction progrannable

Amaton con

$$
193.56 .72 .92
$$

3.7 Domain name Resolution: when we sit anyurl into the browse, it's whole sole responilbilits of operating system to identify the is attires comespontins to that url.
Step 1: - Operating system will redirect this call to local name resolver to fetch the IP atsress of requested url.
step end! -local name resolver will first torsloak us into it'ls local ache to find out the entry else it will directly contact to network name resolver.
step 3 di:-Netwolk name resolver will contact to the ret.
80, Network name resolver will contact
one of all is reest server to fins oust the ip abscess of the url.

Step th: -Rout server will not directly fulfil the request raises by network name server it will redirect the request to one of top line domain name server.
step star so Ton level woman name server will redirect this request to some set of local server's which contain information about that url.
It might be possible that multiple
\qquad
\qquad
\qquad
servers can have, the entry of requested url.

47 6 the -
En the above sohnerios, we can process the request in thur ways:-
(a) iterative
(b) Recursive

elfin
ever
af
(b) Recursive approach.
ever
me
stain
le

Note:

\leftarrow iterative \rightarrow
K Recusine A Aeratine \longrightarrow
\rightarrow Regnstry: -

5) Communiation Preblem:-

WWW.GRADESETTER.COM
सोर्थ $>$ mine
$\xrightarrow{\Longrightarrow}$ krak moran
$\longrightarrow k k$ lush/ \qquad
\qquad
\qquad

57 ISO - Internal standard of organisation

If mac attres of diff compute is available then why be needs is abtras

Reason: \rightarrow mac attires does not have any hierarchy, so ae not use astres for setters. it for netrearking.
6.) \rightarrow Hierarchy

\rightarrow Host - local pe, mancial intruptè needs.
server - Auto responded, more well structure

77 O.P-Affens-
(i) class A
(ii) class is
(iii) clans c
(iv) clays ©

CT Gas E

WWW.GRADESETTER.COM
\qquad
(1) Clars A:-

$$
24
$$

Netrock is

Host id

$$
00000000
$$

$\times \longdiv { 1 1 1 1 1 1 1 1 }$

80

$$
\text { host }=2^{24}-2
$$

801
Real is a
00000001
11111110

$$
(1-254)
$$

$$
\xrightarrow[x]{\substack{1-27} \text { Not allow }}
$$

$$
127 \cdot x \cdot y \cdot z \quad x
$$

$$
\begin{aligned}
& 2^{24} \\
& 0000 \cdots \cdots \cdots 00 \times \\
& 1111 \ldots \ldots 11 \\
& 1 x
\end{aligned}
$$

Page No.:
(0) 000

$$
\frac{2^{32}}{2}=50 \%
$$

So, som Adores is waste in class A.

So,
Range of claw $A=1$ to 126
\Rightarrow
$00000001: 000000000000000000000001$
1×1 legmen

1001111101

WWW.GRADESETTER.COM

Notes-Clas का identification सीर्क
Date _1_1_1_1_ initial के 8 -bit से ही Page तोरा है।

180
is config: -
in linux laptops-
(ii) Class 3!

16 bit
16 bit
Net

(iii) Class C! -

WWW.GRADESETTER.COM

(iv) Class D:-

$$
\text { Qicer } \left.\frac{\mid 1100000}{1 / 1224} \right\rvert\, \ldots \ldots
$$

\rightarrow Moinly ased for multicasting.
(V) Clase E^{\prime} -
\square

WWW.GRADESETTER.C̄̄M
\qquad
\qquad
\qquad
peers

$$
\begin{aligned}
& 11110000 \\
& 1111111 \\
& \text { Range }-240 \text { to } 254 \\
& \text { * Range: : - } \\
& \text { class } A=1-126 \\
& B=128-191 \\
& c=192-223 \\
& D=224-239 \text { - multicasting } \\
& \text { (DE }=240-254 \text {-Roseves for fectere }
\end{aligned}
$$

* Algorithm: -

* Object oriontes Principle:-. Abstraction

mesa	SA	$\triangle A$

SourCe Destratio
AdJure

WWW.GRADESETTER.COM

Notes moosk in wes
to hide the srelerant information

$$
200.1 .2 .0
$$

 host id को थीपाई के लए सहि कां 0 कर हिा
\qquad

$$
\begin{aligned}
\text { ip } & \rightarrow \text { class } \\
& \rightarrow \text { mask } \\
& \rightarrow \text { Netwas/ } N N A=1 P A N D \text { mask }
\end{aligned}
$$

Clan c:-
\qquad
*

$\rightarrow 153.056 .0 .0 \rightarrow$ Netersk attic
\rightarrow clefs B.
mask of
In
0
(10)011001
0.0

1
5.0 .0

$$
5,255-0
$$

$$
225.255 .255 .2055
$$

fer enroulcos t
\qquad
\qquad
\qquad
\circ $0.0 .0 .0 \longrightarrow$ The in a valet

But with the help of this in you not able to valid ate.

WWW.GRADESETTER.COM

Tort no.

$$
\begin{array}{r}
U O P-67, \frac{68}{d}, \frac{d}{d e n e r} \\
\text { diant sarer }
\end{array}
$$

- help of t able
tecol af pglicerton

A AEROSPIke 2) \rightarrow एक databose है, पर NO Sal है। \rightarrow vefeult rart: $\rightarrow 3000 /$

WWW.GRADESETTER.COM
\qquad
\qquad
(8) BAMAC: -48 bit

$$
\begin{aligned}
& 1 p:-32 \text { bit } \\
& \text { poft } \rightarrow 16 \text { bit }
\end{aligned}
$$

\leftrightarrows socket addrey.
(9) MAC:-media access control
\rightarrow a physial attrey
NIC) \rightarrow एक रेखा वarl जी netuकर connect करते समात use करते है।
(10) $127 \cdot 0 x \cdot y \cdot z$
$127.0 .01 \longrightarrow$ bop back attres.

$$
\begin{aligned}
& \rightarrow \text { यह netwa/c पे } \\
& \text { तर्थैजाएगा; बवापस } \\
& \text { आजाएगा। }
\end{aligned}
$$

WWW.GRADESETTER.COM
(ii) ARP: - Address resolution protocol

Iि से mac adर्ये resolution.
(12) IP Config:-
ip atbrasi-
mask! :-
Troalcont aft rems :-
mac ats res / hardware attires!.
(II)

DHCP time

(14) $\quad A P 1$ - Reverse affies resolution protocol

(15 1995
when ipvè er lost,
Then,
NAT
$\frac{\text { Telephones fuptem. }}{\rightarrow 10^{10}}$
(ib) NAT \rightarrow Neturle attres translation

WWW.GRADESETTER.COM

Whe
netw elc of $198.8 .3-2$
Page No. 148.6 .3 .0

Date ___ 1
1988.23 .0

WWW.GRADESETTER.COM

Date _1_1
*

$$
\begin{aligned}
& \text { "City - Teimp } \\
& \text { von }
\end{aligned}
$$

(in) Propge

(19) CIDR : Classless inter domain Routing, \rightarrow जिसने $1 \mathrm{PV}_{4}$ को बधाजा।
(20) Subn etting:-
eas 9.
maintainence.

WWW.GRADESETTER.COM \qquad
200.1.2.0 \rightarrow Neturt ather
©

$$
N A=200.1 \times 2.128
$$

(1)
in realits

$$
\text { DOUA } \rightarrow 2000+12.25 S
$$

$$
\frac{1!t-200 \cdot 1 \cdot 2 \cdot 129}{1} 1
$$

$$
\hat{y}
$$

Directes broabest ablresy.
This fit

masiask Subhe.
host
mask1s255.255.25S.(128
\qquad
\qquad एकी

$$
\begin{align*}
& 200112.0 \ldots \ldots \\
& d+d \frac{1}{2} \tag{1}
\end{align*}
$$

$11 \% 11$

$$
\begin{aligned}
& 111111 \\
& 2 \text { ss. } 2 \text { ss. } 25 s .128 \\
& \text { IIIIIIM, } 111111,111111,10000000
\end{aligned}
$$

$$
4
$$

* Ip attdres

WWW.GRADESETTER.COM

7
borrower from the host id part and there exact position.

Bed on the following rules:Rules u-NO. of is in a subnet mask indicate network id port and
\qquad borrowes bits Parth.
Qule 2:- No of os indicate
Qule 2:- Noi of id part.

$$
\Rightarrow 1000
$$

of given mask : -
AND Opeath. given ep:

Net id/subnet id

$$
\begin{gathered}
00000000 \\
11001000 \\
\hline 000000000
\end{gathered}
$$

De attres!

$$
192.192 .192 .0-0-0-0 \leq 1
$$

noirech growseo atther-

$$
192 \cdot 192.192 .1-1 \geq 11
$$

$$
\text { maski- } 15 s .25 S .255 .0000\left[\frac{1}{1} \subseteq 00\right.
$$

WWW.GRADESETTER.COM

Ip affrees:-192.192.192.200
mask - 055.255 .255 .72
(a) No. of bit's borrowed. $=2$
(b) $192.192 \cdot 192.72$
(c) $2^{6}-2$
(d) 4

$$
\text { (e) } 192.192 .192 .255
$$

sol 14

$$
255 \cdot 255 \cdot 255 \cdot 72
$$

att offres.

$$
\text { Q } 0,0-0-1
$$

$$
\max (1-
$$

$$
00 \pm 001 \geq 0
$$

"Do not say, 'it is horn 4 g.' and dismiss it with a name ${ }^{4}$ yesterday.
Q) $i p 1 \Rightarrow 150 \cdot 100 \cdot 100 \cdot 100$

$$
\text { masks - 25s.25s. } 255 \text {) } 0
$$

(d)

$$
\begin{aligned}
& \text { Dt:- }-1-1001011 \\
& \text { (a) } 801 \\
& \text { (b) } 150 \cdot 100 \cdot 100.0 \\
& \text { (c) } 2^{8} \Omega
\end{aligned}
$$

$$
\text { (e) } 150 \cdot 100 \cdot 100255
$$

WWW.GRADESETTERCOM

Contention period

4
A

K-station's are already present to transmitte their dicta into the particular Contention slot:
P - Probability

$$
\begin{aligned}
\text { Probability of success }- & k_{c_{1}}(1-P)^{k-1} \\
(A) & =k(1-P)^{k-1} \\
A & =k(1-P)^{k-1}
\end{aligned}
$$

probability of preen
For what value of T, A would be maximum?
(NOT) $4 \times$

$$
\begin{aligned}
\frac{d A}{d p} & =k\left[(1-p)^{k-1}+p(k-1)(1-p)^{k-2}\right]=0 \\
& =(1-p)^{k-1}-p(k-1)(1-p)^{k-2}=0 \\
& \Rightarrow(1-p)^{k-1}((1-p)-p(k-1))=0
\end{aligned}
$$

\qquad

$$
p=\frac{1}{x} \quad \Delta(1 \in)^{1}
$$

$$
A=(1-1 / 2)^{k+}
$$

$$
\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k+1}
$$

$$
\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k}\left(1-\frac{1}{k}\right)^{-1}
$$

$$
\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k}
$$

$$
e^{-1}=\frac{1}{e}
$$

$$
\begin{gathered}
\lim _{k \rightarrow \infty}\left(1+\frac{x}{k} k\right. \\
e^{x}
\end{gathered}
$$

$$
\begin{aligned}
& A=\frac{1}{e} \\
& f= \\
& \text { Probability } \\
& \text { of success. }
\end{aligned}
$$

$$
\operatorname{Pr}(j)=A(1-A)^{j-1}
$$

$$
-j=\text { No. of } s l^{\prime}+1
$$

Cancer expected no af slot's requires

$$
\begin{aligned}
& {\left[(q-1)(1-x) x+\sum_{j=1}^{\infty} \operatorname{Jor}_{1}\left(j^{\prime}\right)_{M}=\sum_{j=1}^{\infty} j^{\prime} \times A(1-A)^{j-1}\right.} \\
& m=\frac{1}{A}
\end{aligned}
$$

\qquad
\qquad 1 \qquad
\qquad
Q) Supprase node A and B are on the same 10 mbps cathernet segment and prosoredis delay b/w the reva nave in 225 bit time suppose A and B send frame at $t=0$ the frame collides then at what time A or B finish this transmitting a lamp signal. Alums that jump signal is 48 bit bassmition find
solve

$$
\begin{aligned}
& \frac{225}{2}+\frac{225}{2}+48=225+48 \\
&=273 \\
& 273 \\
& 225
\end{aligned}
$$

*

ww craposeserter.om Network layer:-

$$
\begin{aligned}
& \text { TP:- (Internet protocol) } \\
& \text { Protocols:- IP, ICMP, } 1 G M P \text {, } \\
& \text { ARP, RAP, } B G P, O S P L, Q 1 P
\end{aligned}
$$

(2) IP header formate:-

(i) Version: - The version field will keep track of which version of the protocol, the latagram belong's to.
of $1 v_{4}$ ressionf or $1 P_{8}$ version.
(ii) Header length: - Et in used to know the length of the header, at in of 4 -bit and each number in heals length indicates 4 -bite wens. so if header length es equal to

WWW.GRADESETTER.COM
to s.
\sim maximum
heal

$$
\begin{aligned}
\text { length } & =11111 \\
& =15 \times 4 \\
& =60 \text { byte } \\
\text { an length } & =0101 \\
& =5 \times 4 \\
& =20 \text { by th }
\end{aligned}
$$

- Type of service:-
of more than one packet's are accumulate at router and router need's to pin us their buffer in that case packet having les prionity will get discarded.
of delay bit sis so to that mean's
rout the packet in such a way

$$
\begin{aligned}
& \begin{array}{l}
0 \\
0
\end{array} 0 \\
& \angle 0101=5 \times 4 \text { Byte } \\
& =20 \text { Byte }
\end{aligned}
$$

that the delay is les.
of cost bit is equal to 1, then choose the root fer packet which gives less costs and
same with reliability and throughtput.

- Total length:- A total length includes everything in the rotagram both header and data the maximum length is 2^{16} whichin 65,530 bytes. at present this upper limit is tolerable but with future gigabit network's larger vategram's may be needed.

- Dentification number!-
each and every dotagram will use an identification sum. starting from 0 to 064 K .

Note: $\frac{F^{\prime}}{\text { No }} \Rightarrow$ not fragment
Boot P protocol

$$
\left(\frac{m}{F}\right) \rightarrow \text { more fragment's. }
$$

Cotton
(mF bit en zero
then it means
it is lost
bit.)

- Offset This fills is used to know how many data bytes are aheas af this frogment. in a particular packet.
The frogment offset tells where in the current dotagrams this fragment belongs. o all frogmen's except the last one in th datagram must be a multiple of 8 bytes, the clemently figment unit.
Since 13 bits are provided, there is a maximum of 8192 frogonents per dotegram giving a maximum latogram length of 65536 by tess.
Q)

$$
1500
$$

$$
<504120
$$

$$
\begin{array}{|l|l|}
\hline 176 \quad 20 \\
\hline
\end{array}
$$

\square
$i d=0$
$m E=1$
$\begin{array}{lll}O F=63 & \quad O F=85 \quad O F=107\end{array}$
$O F=0$

$$
+664=\frac{22}{85}
$$

Receive

- more foment This bit says if more fragments are following the current frogment.
- Do not frogment - when ever a packet with $D F=1$, router should not frogment this packet.
- Re-arsembly algerithm:-uses at destination
(i) classify the frogment's based on the identification numbe
(ii) Idorify the figment bares on The affect ravel to ' O ' (zeno and designate it as a first fragment.
(iii) Identify the fivegment with MF equal to zen and designate it as a last. frogmen. (V) Identify the data bytes in the
fist fragment and divide it by 8 and search fer a fragment with same offset and designate it as a second fragment.
(IV) Divide the dokblates of and frogment and result should be added with ittaffset value will gives you affect value of next progment.
(V) Repeat the previous step fill completion.
(3) TTL (time to ere):-

Timestamp:-

WWWFGRADESETTEREGOM avoid infinite boring into the network This can be implemented in two wa hostactoild. Stamp sta Time stamp: In this approach hastactoid stamp generation time of the packet and when this packet reach to the router, It will substact its Qonenatig? time from it current time and resulted
(*) Protocol field!value is compares with the It is use to identify theme the ip
maximum allowed time of the packet: If resultant value is les than maximum allowed time the packet will be forwassel through outgoing link.
else the packet will be tiscartes and Imp will come into the picture.
(ii) Hop count : - At host the value of hope count will be inicialised by
(ash maximum distance b/w source and distinction or with the diameter of the network.
when this packet reach at router, router will. decrement it's hope count by 1 , and check whether hope count value is 0 or lesithan ' o ', If so then it will dischith the packet and call subroutine 1 cmp forfungecessany action else
link.
(4) $)$ Checksum:-

At each and even router checksum have to be computed.

HuWhWW.GRADESETTER.COM

At each and every router checksum hare to be computes because some of the field's in IP header may change as the op packet makes a journey towards the destination. $M F, T T L$, offset, 16 bit datagram length and option's like
(4) Strict source rating!-
(f) loose source routing
cc) : time stamp values.
(i) Recon route routing

WWW.GRADESETTER.COM
Switching
(i) store \& forward:-

(i) circuit setup:-

WWW.GRADESETTER.COM
(c) State information $($
C) Rater's do os not
hold state informs test about can der the convection.
each packet is route choosen when routed independently. i.e. complicates loop un procedure virtual circuit as setup of pocket will follow it

- Ir In vatagram each packed routed indepenently.
ace Complictad but presser.
* virtual circuit: Rout choosen. when virtual eircen't will set
- non recept for packet loss daring the crash:

cosy if enough routes can bo allocated in advance
- option fields-
(i) strict source routines-sth s es

$$
S S R=A B C F G
$$

(ii) loose source routine

(iii) Time stamp values:10. Cw Decor solute routing C
(1) Strict source routing: -
in strict source routing packet will be farwarled to the next dittoing link based on route provides by the source.
(ii) loose source routine: -

In loose source routing the path provided by source might not be Completed or source can specify some set's of router's that muss be includes the path of routing. so, when this pocket reach s of rout or reciter will follow atteast the limited pooh provides by the source or it will traverse the packet ria specifies router's.
(iii) Time stamp values:-

WWW.GRADESETTER.COM
Daie-1-Routing protocol's

(3)
(a) Olaptive (Dynamic)
(b) non-alaptine (stati e)

(i) static shortest path routing:-

WWW.GRADESETTERCCOM
Flossing: -
Flossing is a static algorithm.
An alternative techniques to find out shortest path b/w source and distination. we use flooding.
A variation of flossing that in sightly more. practical in selectee flooring.
in their elganthm
router do not send every incoming pockets out on evan line but only on those line that are going approximately on right direction flooding i not practical in most application but it thus have some uses. for example.

In military appliciton, in distributes vatabase application where sometimes it is necessary to update all the database concorrently. In wireless networks,
(ii) Distance vector southing:
(Belmanford algan'thm)

bock:- 2 Tanon bomb
 - 1 inomanc I

| A | min $(8,10+24,6+21,12+20)$ | |
| :---: | :---: | :---: | :---: | :---: |
| B | 20 | $\min ($ |
| C^{\prime} | 28 | |

Drawback:

1) Count to "A" Bandsen Droblem.

WWW.GRADESETTER.COM

rutn thet tho arone ban trousal
atos unctrib riadto

- ina tron ant akN Noxih. Hor M
 DScanner

The network uses a distance rector routing. Once the root have stabilised the distance rector at diff nodes are following

$$
\begin{aligned}
& N_{1}(0,1,7,78,4) \\
& N_{2}(1,0,6,7,3) \\
& N_{3}(7,6,0,2,6 \\
& N_{4}(8,7,2,0,4) \\
& N_{5}(4,3,6,4,0)
\end{aligned}
$$

of uptake, what will be the new distance vector at node N_{3}.

Bel 1

$$
N_{3}(3,2,0,2,3)
$$

Q) After the updates in the previous question the link N_{1} to N_{2} goes down, N_{2} will reflect this change immediately in it's distance vector as cost " "ळ", after the next round of update, what will be the cost of N_{1} in distance vector N_{3}.
sol

$$
\begin{aligned}
& \text { NH }(0,1,7,8,4) \\
& N, 10, \infty, 7,8,4)
\end{aligned}
$$

$$
N_{1} \in
$$

$$
\text { N, }(0,1,3,8,4)
$$

Chrybode and at $\operatorname{Nt}_{2}(1,0,2,4,3)$
aton ontacon.

2 tots

$$
\prod_{3}(3,2,0,2,5)
$$

\qquad

$$
\begin{array}{r}
\text { rit } 014,2,0,4) \\
\text { Ns }(4,3,5,4,0)
\end{array}
$$

WMWW.GRADESETTER.COM

WWW.GRADESSETTER.'COM-

$$
\begin{aligned}
& {\left[N_{1}(0,1,3,8,4)\right] \times} \\
& \left.N_{2}(\infty, 0,4,3)\right) \\
& N_{3}(3,2,0,2,9 \\
& N_{4}(8,4,2,94)
\end{aligned}
$$

* Link state routing:-

Distance vector routing was used in ARPANET fill 1979, when it was replaces by link state routing: Two primary problem calese it's demise:- purer(a) since the delay matrix was length it did not rake line bandwidth into account when chowing routs?
(b) Count to infinity problem

- $80 y$ the dea behind the link state routing , can be stated as fine parts:-
(a) Asiscone 10 their neighbour and leary their network aftres.
(6) major the delay or cost to each of it's neighbour.
(c) Constrest a packet telling all it has just learn
d)send this packet to all other router's.
(e) Compute the shortest path to every other router.

* OSPF (open shortest Path first):

It's an interior gateway routing protocol.

$$
\begin{aligned}
& \text { centra within OOSPF } \\
& \text { NAS-autonomoles }
\end{aligned}
$$

$$
\begin{aligned}
& \text { C pred pa gateway } \\
& \text { Terms }
\end{aligned}
$$

WWW.GRADESETTER.COM

menage type:
Description :7\%
(a) Hello
(b) link state update
use to discover who the neighbour's are.

Printers the sender cost t_{2} it's neighbour.

Acknowledge the link state acknowledgement update.

In 1988 , the internet engineering task force begin work on socesor af original int interior gateway protocol which ares a distance vector protocol bases on balmanfort algorithmic.
The sucesar called OSPF, became standard in 1990 OSPF support. three kind of connection in network 1.
(a) point to point lines b/w exactly two router

WWW.GRADESETTER.COM
(b) multi oecen networks with broalconting (c) multioeces notworks without proascosins.

A multioccey network is one that can have multiple router's on it ans each of which can directly communicate with all other's.

* Super-netting:-(Clanful)

The process of aggregating two or more networks to generate a single netwali's is susernetting,
Restriction in supernetting:.
(ai) All the netwak must belong's to same dass.
(ii) the retwone is of the retook must be in sequential order or configious.
(iii)

Subnet mask:
it in uses to generate single TP attreis to a grous of netwole boses one two bules.
(i) The no. of is ndicete fines part. (ii) No. of of inficate variable port.
Q) Derferm a CIDR aggregiation on the following IP adtres and generate a single is attres

$$
\begin{aligned}
& 20 S \cdot 100 \cdot 0 \cdot 0 \\
& 20 S \cdot 100 \cdot 1 \cdot 0 \\
& 20 S \cdot 100 \cdot 2 \cdot 0 \\
& 20 S \cdot 100 \cdot 3 \cdot 0
\end{aligned}
$$

subnet mas $k=$?
subnet id $=$?
$80 / 1$
suof diret broascet:-?
\qquad
\qquad

$$
255.100 \cdot 00000011 \cdot 11111111
$$

255.100 .3 .255

$$
\begin{aligned}
& 200.96 .86 .0 \\
& 200.96 .87 .0 \\
& 200.96 .88 .0 \\
& 200.96 .89 .0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \ln 200.96, \\
& \frac{64.32168421}{x \times 8 \times}
\end{aligned}
$$

44
$7 / 46$
$7 / 0$
cg:

$$
\begin{array}{rl}
20010 \cdot 1=0 & 200 \cdot 1 \cdot 0 \cdot 0 / 24 \\
200 \cdot 1 \cdot 1 \cdot 0 / 24 \\
200 \cdot 1 \cdot 2 \cdot 0 / 24 \\
200 \cdot 1 \cdot 3.0 / 24
\end{array}
$$

$$
\rightarrow 4 \times 2^{8}=2^{10}
$$

$$
200 \cdot 1 \cdot 00000000 \cdot 00000000
$$

01

This an ed with "Oo not say, 'tit is morning,' and dismiss tit with a name of yesterday.
\Rightarrow stubied in ${ }^{\circ}$ Responsibtity network layer:-
Routing

- filferng \& frwaroty - chectesum
layer:-
ranspert layer protocol
(1) TCD (transaction control protocol):-

$$
192.156 .72 \cdot 98: 1092
$$

- FOPtser:

Shocked's are going to identify the Connection.

- TCP characterstion
(i) It as a reliable bije stream oriented pert to pert transport layer protocol.
(ii) Pep is using selective repeat and having the acknowledgement.
(iv) TCP in using Accumulator acknowledgement Principle. iv) TeD connection ar full duplex connection,

WŴW.GRAD ESETTER.COM
\qquad
\qquad
(v)

Connection:-

(vi) TCP uses Asymetre connection (vii) TCP uses sliding windows protocol. (ixis)(vili) TCP does not support broascest arne multicas ing.
Phases of TCP connection:-
(1) Connection stablishment an aldol
(ii) Data transfer
(II) Connection termination./
(1) Conncetion Hablishment:request pocked.

4namodlolosentso

(II) Date tomes: -

(III) connection termination:

* TCP header! -

(i) Each no io teaser fills represents 4 byte war of TCP header.
(a)sys (syn flog)! - synchronisation flog used for connection stablishment:

(b) ACK flogs: it indicates if oeknowedfermy is 1, TETN it contain data and aeknowledy
(2)
sym Ack

$$
\begin{array}{ll}
1 & 0 \\
1 & 1 \text { - request } \\
0 & 1 \text { - reply } \\
1 & \text {-elenowle (Data + orel roo oraclindo) }
\end{array}
$$

(c) FIN flog: - This flog in uses to terminate the connection.
(d) RST flag! - (Reset flog), i- It is uses to refresh the connection.
(a) URG flog (argest flog): of urgent flog a set at transport logor, then netwaple layer will morease the priority.
(f) PSH flog (push flog) 2 when a pocket with $P S H=11$, of it ens available at TCP, it must push it to the upper lager without waiting to so milliseconds.
(ii) whenever sillywindow syndrom, whenever there ii byte of tot a is exchange o/ ω sender and areceina then it is sillywindow synderom during sillywinow syndrome efficieng or zero.

Reason for silly window syntrom-
(a) wheneren receive announces it's window size as zero, when sender generates. I byte of data, when consume 1 byte at a time

293					

Lad (Iv) dec premleses of random initial sequently number - to stop segment from trereniously closes baytem to hercenceptel as a valid segment for this sessiontortiti $2,7 t$ all molt

WWW.GRADESETTER.COM.

* Raparound time-
whenever we start with the sequence numb the time taken to reach the same sequence number is called rape around number.
o) Consider the line bandwidth is 40 megabit's pe second and sequence number fills consist of 32 bits. find out the rape around time for the sequence number.

Sol

$$
8 \text { pega-bytes } 14^{2}
$$

40 mega bitt per scion

$$
\begin{aligned}
& \frac{40}{8}=5 \mathrm{mby} \text { fe/ } / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& 2^{5}=2^{20} \times 2^{2} \\
& 46 \longrightarrow \frac{8}{40 \times 10^{2}} \frac{8 \times 106}{2 \times 2} \\
& 800 \mathrm{sec} A
\end{aligned}
$$

Q $)$ Consider a bandooith of 40 mega bit's sec and life period of sosec fins the suitable no of bits in sequence no of field to handle the situation.

WWW.GRADPGSETTER.COM
$T O P, V \perp P$ and $1 P$ frate

$$
\left(\begin{array}{l}
(3.2) \\
\frac{8}{8} \mathrm{D}- \\
\hline \text { - }
\end{array}\right.
$$

$$
\frac{b v}{(2)}
$$

1-scesion
The \rightarrow Tranepart loyer cornarvites ensto
(4i- Net end cionrediviv
P
(o) trinsourt from ens to enjy
$\left.19.3 \frac{25525531.0}{\operatorname{dos} b}-0-927,120,19 d\right) \quad(c)$

son ${ }^{n}$
bandwitth $=40 \cdot$ mogibits $/ \frac{\text { see }}{}$
O

$$
\begin{aligned}
& 4=5 \text { mege byte } \\
& \text { So }=\frac{250 m}{20+0}= \\
& 10 \pi \frac{\text { soobyte }}{100} \frac{1500}{1000}
\end{aligned}
$$

$$
1501
$$

 \square
\qquad

It is uses to indicate how much data in the packet is argent. It is applicable when flog is equal to 1 , otherwise it should be ignore.

- TCP connection stablisfonent:-

48 C60

* TCP Congestion Controls-

TCP sender is haring two window's one is sender windows (us) and. and in congestion window $\left(\omega_{c}\right)$. ω_{f} will give receiver capacity and ω_{c} will give you underline network capacity.
sosenda will transmit minimum of sender window ans congestion window.
d

- Estimation of sender coindow size:-

It can not be statically determines so, voe lase asrertiment windows dynamically.
aton of congestion window sizes.

- Estimator of congestion coinda size.
tog there à no static method which mean's Ho we wave to go fer. AIMO algorithm. 4 Adding increase and multiplicative decrease.
\qquad
करणनांप

WWW.GRADESETTER.COM

- Slow stant phase:-

How does in sendernospereine Cong eeston
02
(i) los event Mime out or 3 duplicoote. actnowlelgement
(ii) Senser gimit transmissioms-hest byte sent - uat Livernast byte ack mo hrim shither shouls be les than qual ownon, xhmilatum
to Congestion windows.

$$
T_{p}=m_{\text {in }}\left(\omega_{c}, \omega_{s}\right)=\text { rate at transmitte }
$$

. After 3 -diepliceote oeknowiegemens the Congenston winitow aet in half and window then grow finearly.

But offer time out event congestion coindow set to 1 mss (maximum segment size),
window then groped's exponentially to a threshold, then grows linearly.
$\rightarrow 3$ duplicate ark. indicates network capable of delevering some segments. but timeout's indicates a more alarming congestion schanario.

* Congestion aroifano: -
* 3-Suplicate racket -
* Time-out:
a) Consider an instance of TOP AIMD algenthn where window size at the sand of slow.
. Infant phase in 2 mss and the Threshold at the start af It transmission in 8 mss . assume What dime out oecurls during a 5 th transmission. find the Congestion coindow size et (the ens of coth transmission:

\qquad

Aloes) ama han
Q.) Consider a TCO Connection ayin state where
4. therest aron no ouftanding vraetnowlegement. The Imp. sender sends two segonent hook to bock, The sequence no of and $2 n$ i reameitls ae 230 and $2 g$ o resp. The int segmentreves lost and $2 n d$ segment was recelibel s correctly Let x be the amount of dote cam'es in the it segmentin'lytert ans' ' x 'be the cot ack no by the receiver. The

WWW.GRADESETTER.COM
value of x ans y are in order
30^{n}

On a TCP connection current congestion coindow size is 4 kilobyte. The coindoo size advertises by the rereciver is alvertisment windows equal to 6 kilobite. The last byte sent by the sender is 10240 and the last byte acknowledges by the receiver. is 8ig2. current coindoco size ot the enter.
(a) 2048
(b) 4096
(c) 6144
(d) 8192

3017

Chote Packet: -

- Itere packets-

Quality af service:
1.) Traffie shaping: - There shouls he aggremt b/wo ceser and ISP, preuraegont

$M \rightarrow$ rate at which the sourer is generating the rota
Wi, 7.2 S \rightarrow en the burst time: /Total time that
inc then sure will transmits$E \rightarrow$ capacity of bucker the sates,
Mise rm

WWW.GRADESETTER.COM
\qquad

eg:7 If oaracity of the bucket is 250 kb soure tata generation spees is $25 \mathrm{mb} / \mathrm{s}$. ter telton genorating spees(s) is $2 \mathrm{mb} / \mathrm{s}$

Soln

$$
0
$$

S90e erfurenes motbl $\leqslant 8$ G4a?
calcalate the s.

$$
\begin{align*}
& 2 S S \equiv 0.2 S+2 S \\
& 238=0.25 \\
& 52 \frac{025}{23 \times 100} \\
& 25 \times 10^{6} \times 8=250 \times 10^{3}+2 \times 10^{6} \times 8 \\
& \text { a } 2\left(2 \operatorname{sen} 10^{6}-2 \times 10^{6}\right)=250 \times 10^{3} \tag{i}\\
& \text { W. Werit } 23 k 10^{6} \times s \geq 250 \times 10^{0} \\
& 0 \times 10^{\circ}=\frac{200 \times 10^{-3}}{23} \\
& 2 \times 8+5=2 x \text { m } \quad 1+2 x=10.9 \text { mseefyl) }
\end{align*}
$$

- TCP Timer management: -

Timer for it's operation:-
(i) Acknoololgement timer: -
(ii) Keep aline timer's
(iii) Resistance timers
(ii) Times and wait timers.
(i) Keep aline timers:-

It in used to keep track of ideal TCP connections If there is no communication fer a pre-definel perios of time, the connection will be closes alto matically.
eg, ned barkinastime
(iii) Dersistance timers.

At es used in pili window synitom to transfer sill packets in equal internal of time. This decided by percistance timer's.
eg. ATM regularly sent the pocked
(i) Acknowlegement timer:-
we Cant determine: roundtrip time staticully
Wees oe rim did in data link layer. so we ness dynamic methods.
A Basic alan hmm:-
OThers assume initial roundtrip time (IRTT) ii equal to so see. Smoothing factor is equal to $0.9(0<\alpha<1)$

WWW.GRADESETTER.COM
new roundtrip time (NR TT)
find the estimated is equal to cosec,
$80[4$

$$
\begin{aligned}
& \text { Estimated round }=\alpha \times \sigma R T T+(1-\alpha) \text { NRTT } \\
& \text { trip time } \\
& \text { (ERT) }
\end{aligned}
$$

grouting fate $20.9(0<\alpha L 1)$
aNTI = tore

$$
\begin{aligned}
E R T T & =0.9 \times 50+(1-0.9) \times 70 \\
& =52 s e e
\end{aligned}
$$

$$
\text { Time out }=52 \times 2
$$

$$
=104 \mathrm{sec}
$$

Now, assumes -
New round trip time $=80$ gee Now the estimate then $E R T T=$? \longrightarrow Now come initial

$$
E R T T=0.9 \times 52+(1-0.9) 80
$$

$$
=54 \times 8
$$

$$
+6, b+a
$$

$$
\begin{aligned}
\text { Time outing } & =4 \times 8 \geqslant 2 \\
& =1096
\end{aligned}
$$

M1. Notes-rithertefaut time out of boric algorithm y er fivice of exmatal round trintime.

Lbantom o'manero

WWW.GRADESETTER.COM
linux Tunnel -os trough,
Date
proxy seive
vpis consigure,
Jacobson's Algo:-
algo says. that insteas of multirlying roandtip time with 2 , you can take standard deviation to calculate the time oect.

o) of $1 R T T=50$ see, and NRTT $=$ 7osee, Nh $s D=$?,$\quad \alpha=0.9$, het $D_{i}=$ initial Jeviato $n=588$
soln

$$
\begin{aligned}
\text { ERTT } & =0.9 \times 50+(1-0.9) \times 70 \\
& =52 \mathrm{sec}
\end{aligned}
$$

now

$$
D_{N}=S D=150-70
$$

$$
=20
$$

$$
\begin{aligned}
& \begin{array}{l}
D_{E}=\alpha \times D_{i}+(1-d) D_{N S} \\
\end{array}=0.9 \times S+(1-0.9) 20 \\
& \text { Cstimates }=4 . S+2 \\
& \text { deniation }=7.5 \\
& T_{0}=E R T T+4 \times D_{E}
\end{aligned}
$$

Timeout

$$
\begin{aligned}
& =52+4 \times 7.5 \\
& =52+30.0 \\
& =82
\end{aligned}
$$

MARN'S AlgenthmL
of time out occur's because of delays oeknowleigement, the data packet is re-transmittet, Then there is a possibility af two admeoledgement-
(i) The relaies oeknow. fo att packers
(ii) Acknowleggen for rentrimmittes perk es Then it causes ambiguity that which alk. must be taken into Consideration for the next transmission. so, the amandify en resolute by karnls ago which says that.

Sort update the roundtion some for any segment which a reatiensilty cos but just double the amount for each failure until segments get through
i) Sst is connection lees protocol. It is used for multicasting and brocelcating application
(ii) for real time application, TCP is not applicable because of congestion window. that why $U D P$ ir used, It does not have Congestion window.
(iii) Fer multimedia application TCP in not uses becalese of congestion windrow.
(iv) Some application requires fastries rather than reliability. So TCP cant be used. eg. DNS,

VDP healer:-

$S P$	$D P$	
cheeksom	length	

* The difference b/w UDP and TCP

Tome TCP	

(i) Connection oriented; reliable, slow
(ii) onerheal is high due
(i) Conection leas, non-reliable and fast:

Cia to header and Comection
(ii) overhead in low
"Do not say, 'It is morning.' and dismiss it with a name of yesterday.
(iii) HTTPS, ETP, Talned, remote $\log n, 8 M T D$, these are using the application of TCP.
(v) Nab application, mail file transfer, remote system asmininetration they all wo TCP
(iii) simple nagemph sur y , SNMP.RIP, ans all multimedia protocols uses Vol.
(iv) name translation, real time, multibroal casting multicasting and network management. There all tone by VDP.

- Responsibility of ranspant layer

Protocol! -
(i) Ind to end error control, flow control, and segmentation and se-assembly.
(ii) User oriented:- Application programmer can directly intereoted loith
(iii) Negotiation of Quality and type of Service
(iv) It also deals with storage capacity of the subnet and congestion control.
(v) multiplexing ans demultiplexing
(vi) service point affresing or socked affrensing.
((\%)
(1) Dialog or Control or dexeipline management connection manogent
(ci) Session layer sent's same dummy packet to the server to keep connection aline
(iii) maintaining synchronisation or check points.
(iv) maintaining the group of operection.

$$
\begin{array}{cc}
\text { so } & 0 \\
A=A-S O & B=Q+S O
\end{array} \rightarrow \text { Atomic }
$$

- Responsibility of presentation layer
(1) encoding ans decoding
(ii) encription \& peemition.
(iii) compression ans decompression.
d

$$
\left\{\left.\begin{array}{l}
\left.\begin{array}{l}
\text { OS } P / 1 C O \\
A- \\
P- \\
P
\end{array}\right\} \rightarrow(A P P \mid i c a t i o n \\
T- \\
D- \\
D- \\
P \\
D \\
P
\end{array} \right\rvert\,\right.
$$

*

Aिpplication layer

The majonts of protucols areilable. Thir layer killow cesers to divectly Communicute with the applifation.
protorols of arricat tosen:-
(i) smTp
(ii) Talnet
(iii) $F T P$
(iv) TFTP
(V) HTTP
(vi) HTTPS ete

* TaMnet-

* Serrer:-

WWW.GRADESETTER.COM
ser

- Consider the affect of slow start on a line with 10 milisecons RTT, and no congestion the receiver windows size is 24 kb and maximum segment size is $2 k b$ how long doe it take before the st full window can be sent.

Sol

$$
\begin{aligned}
& \text { RUT }=10 \text { milisecond } \\
& \text { Or }^{2}=24 \mathrm{~kb} \\
& \text { max. see size }=2 \mathrm{~kb}
\end{aligned}
$$

Q) Suppose the TCP congestion, coinjoe is 18 kb , and then time oct occur's. then how big will be the congestion window of the next 4 transmission's burst: ans ume that the maximum segment size is $1 k b$.
Sol 1
An $\geqslant 8 / 1$
Congestion coindoeo size $=18$ Now, time out

$$
80 \text { throes }=\frac{10}{2} \geq 9^{20}
$$

$$
\begin{array}{r}
4 \\
2 \\
4
\end{array}
$$

dtaninos
Q) If the TCP roundtrip time is cumently 30 milisec , and the follooing ock. comes in after $26,32,24$ milise. What is the new round trip time estimated.
Using smothing facter is os 0.9
sol

$$
\begin{aligned}
& s=0.9 \\
& \text { IRTTT }=30 \text { milisee } \\
& \text { oek }=26,32,24 \text { milise. } \\
& \text { NRTT=? } \\
& \text { ERTT } 2 \times 1 R T+t(1-\alpha) N R+1 \\
& \text { O }=0.9 \times 30+(1-0.9) \text { NRTD } \%
\end{aligned}
$$

$$
\begin{aligned}
& 260-2 g 7+2 \cdot 6 \\
& \frac{29}{20}=29.6 \\
& \text { ERTT2 } 0.9 \times 29.6+1 \times 32 \\
& =29.84 \\
& E R T T=009 \times 29.84+1 \times 24 \\
& =
\end{aligned}
$$

0) A TCP Bachine sending window's af 6S535 bytes. ona LGis per second channel that has 1 woy delay of 10 milisecond what ei the maximum through achivable,
and what is efficienoy.

$$
\begin{aligned}
& \frac{L^{\prime}}{\text { length of poek byts }}=\frac{2^{16} / x^{2}}{20 \times 10^{3}}=\frac{2^{16} \times 100}{10^{-2}}=50 \times 12^{16} \\
& \text { ound time } \\
& \text { through nut } \\
& =\operatorname{sot} 2^{10} \times 2^{6} \\
& =50 \times 64 \times 10^{3} \\
& = \\
& \text { effreieng: } \frac{\text { throupet }}{\text { ban voidth }}=\frac{50 \times 2^{16}}{2^{33}}=50 \times 2^{-14}
\end{aligned}
$$

Q) The pactre sourre can which of the following fanctionality must be implemented by tanspost layer protocol over and above the netwark lager pratocol.
(a) recoray from pack los
(b) Lettection of Suplicate packets
(c) Packet delray in
(d) end-to-end connectrits.
0.) Nekin af the fottowing The routing vable of a rocutor in ginen below

Destinaton	subnet mask
128.75 .43 .0	255.255 .255 .0
128.75 .43 .0	25.255 .255 .128
192.12 .75 .5	255.28 .25 .285
Default	0.00 .0

Intufece
ethernet Zero
ethernet one ethengt $=2$ ethe $=$?
\qquad
\qquad
\qquad

On which of the intrifoce us will the vouter ferward the packep aftrees it to destinaton

$$
\begin{aligned}
& \text { 128.7s.43.16 anil } \\
& 192.12 .17 .09
\end{aligned}
$$

sola

An organisation has class is network and wishes to form subset fer 64 department's. Then subset mask could be.
(a) 255.255 .0 .0

$$
\begin{aligned}
& \text { (b) } 25 s .255 .64 .0(c) 25 s .2 s 5 \cdot 128.0 \\
& \text { (d) } 25 s .255 .252 .0
\end{aligned}
$$

(10)
B

2^{6}

$$
255.255 .252 .0 \text { th }
$$

Q.) Two Computer's C_{1} and C_{2} are configures as follows $C 1$ has an Dp aspers of 203:197:-21,53 and sub net mask of $25 s: 25 S: 128.01, C_{2}$ has Dip attrees of $201.197 .75 \cdot 201$ and telnet meanest of

$$
25 \sin 25192.0
$$

which of the following sfotement in true (a) C_{1} and C_{2} both assume that they are on the same network
(b) C_{2} assumes C_{1} is on the some network but C_{1} assumes eq is ton different netwon
(C) C1 assume C_{2} is on the same
net but C_{2} assumes C_{1} is on diff e network.
(d) Cl_{1} ans eq both assume that they are on diff network?
$80 / 1$

If equal then
c) will understand

$$
\begin{aligned}
& \mathrm{NL}_{1}=N \omega_{1}^{\prime} \\
& N \omega_{2}=N \omega_{2}^{\prime} \quad \begin{array}{l}
C_{2} \rightarrow C_{2} \\
C_{1} \rightarrow C_{2} \\
C_{2} \rightarrow C_{1}
\end{array}
\end{aligned}
$$

Ans
Q.) station A, uses 32 byte packets to transmit a messages to station B, losing a sliding coindoev protocol.
The round trip delay ego. A ans B is
80 milliseconds and the bottelneek bandwidth or the path blu. A ans R is 128 kb Ps, what is the optimal window size that A should are

Suppose the round trip propogation delay for a $10 \mathrm{mb} P A$ ethernet having 48 . Jaming signal is 46.4 mieroseconds. The minimum frame size is.

301

$$
\begin{aligned}
& \frac{\text { Transmisio }}{\text { time }}=p d+\frac{48}{B \cdot \omega}+p d \\
& \frac{L}{D \cdot \omega}=2 \times P \frac{p d+4 \delta}{D \omega}
\end{aligned}
$$

Q) An internet service provider has the following chunk of $I D R$ bases ID attresses available with it

$$
205245.248 .128 .0 / 20
$$

Now, this ISP want's to give hall of the chunk af addresses to organisation A and a Quaver to organisation ss, while retaining the remaining with itself.

Which b of the following is a valid allocation af g addresses to A and B.
(a) $245.248 \cdot 136.0 / 21 \& 245.248 \cdot 128.0 / 22$
(b) $245.248128 .0 / 21$ \& $245.248 .128 .0 / 22$
(c) $245.248 \cdot 130.0 / 22 \mathrm{k} \quad 245.248 .152 .0 / 21$
(d) $245.248 .136 .0 / 24$ \& $245.248 .132 .0 / 21$

WWW.GRADESETTER.COM
\qquad
\qquad
244440128.

(10)

WWW.GRADESETTER.GOM
one 7.1. Cryptography
Ferment theorem:-
Of 'ip is a prime no, and ' α ' is a positive integer then $a^{p}-a$ ir an integeral multiple of p.'.

$$
\begin{aligned}
& p=7 \\
& a=2 \quad \text { modular arithmetic } \\
& 2^{7}-2 / 7=0 \\
& 2^{1}-2 / \operatorname{mad} 7=2 \\
& a^{p}=a(\bmod p) \\
& \text { Remainder } \\
& \begin{array}{c}
9 \\
7 \longdiv { 6 4 } \\
\frac{63}{1}
\end{array} \\
& \frac{0_{c}^{p}}{a}=\frac{a(\bmod P)}{a} \\
& \int_{\left.\left.a^{p-1}=B(\bmod P)-c a l!\right)\right]} \\
& Q^{p-1}-1=O(\bmod p)
\end{aligned}
$$

2.) Euler toitert function: $(\phi(n))$

$$
\phi(n)=-\operatorname{cog} \operatorname{coght} \text { alva of if * \% }
$$

In boo a jove vet and shote 24 th None $\phi(9)=1,2,4,5,7,8$ al $\phi(7)=1,2,3,4,5,6$

$$
\underline{\phi}(\underline{\sigma})=6 \rightarrow \text { anal no ab }
$$ 19

$\phi(n)=n-1$ when n is Prime no.

WWW.GRADESETTER.COM

So sicitum $=1,3,5,7 \times 1,2,3,4,5,6$

$$
4 \times 6=24 \mathrm{~d}
$$

$$
\text { - } \begin{aligned}
(24) & =1,5,7,{ }^{\circ} 11,13,17,19,29 \\
& =8
\end{aligned}
$$

ino

$$
\begin{aligned}
& 1-9=8 \\
& \begin{aligned}
-\phi(35) & =\phi(7) \times \phi(s) \longrightarrow 1,2,3,4 \\
& =6 \times 4
\end{aligned} \\
& =6 \times 4 \\
& =24 \\
& (\text { (r) } 0 \text {) =irofomet frition rolut }<8
\end{aligned}
$$

* A/A to cufer theorem:- $=(i) h$

Qt state that for enery a and n, © / that t) are relectinely prime to each other
of n is Prime no:

$$
\begin{aligned}
& \phi=n-1 \\
& a^{n-1}=i(\operatorname{mot} a n) \\
& a^{p-1}=\bmod p
\end{aligned}
$$

(1') Discrete lograthimic:-

- If and a are relatively Prime, then there is atlesest one integer ' m ', which satisfy

$$
a^{m}=1(\bmod n)
$$

of a and n ore relatioly prime
The least positive exponent m, for which a^{m} is equal to $1(\bmod m)$ in defines as:presenter
(1) The order or the price of (a mod n) It is also called the length of the period generated by a.
Q.) find the oMer of $7(\bmod 19)$
$801^{n} \quad a^{m}=\Delta(\bmod n)$

p

WWW.GRADESETTER.COM

$$
\begin{aligned}
& 7^{\prime} \bmod 19=1 \\
& 7^{2} \bmod 19=11 \\
& 7^{(7)} \bmod 19=1 \\
& 7^{4} \bmod 19=7 \\
& 7^{5} \bmod 19=11 \\
& 7^{6} \bmod 19=1 \\
& A_{n}=3
\end{aligned}
$$

Q.) Check of 3 is a primitine roet of 7 or

$80 / 7$

$$
\begin{array}{ll}
5 \bmod 7=9 & (\operatorname{lbom})=1 \\
3^{2} \bmod 7=2 \\
3^{3} \bmod 7=6 & \phi(7)=x, x, x, 4,5, b
\end{array}
$$

$$
\text { JSond } 7=6
$$

Q.) $3(\operatorname{mos} 7)(\bmod 7)(\operatorname{mov} 7)-$

$$
(\mathrm{mbn}) 4 a^{19} 0
$$

हैंांगार्य तीवालगताण

WWW.GRADESETTER.COM

WWW.GRADESETTER.COM
\qquad

\square

r Digital signature:
It is responsible fer Proper origin and integrity of the message : Alec

Hashing produces a menage digest, which e's a kind of checksum created on the test bit.

It is a basically one way incription, and impossible to derive menage from digest. Hashing algarithin's are much faster than any encryption algorithm./

W Digital oentificat: -

A digital Certificate en digital file used to cryptographically bind an entities, public key to specific ottribucte belong's to it's identity. eg. Bring licence on stpaispait bini a photograph to a personal info about it's folder.
Same as digital centificater bind a public key to the info norbert, it's oonerraisued by certification authority:

$$
\left((+0+b 0 m)^{\prime} 9-6\right.
$$

- RSA algorithm.
(Ribose shaming affimen.)
This algorithm is based on difficulty af
(fe) acterig ingrondarge encumber that shares) two and only two frater's.
the system world on a lu public key and
Private key combination.

WWW.GRADESETTER.COM

Two large distinct prime number ' P and Q ' bmust be generatel.
ust be generatel, an

Lu sten ons:-
Product of the two number' Δ calles as 'n' is a component of the public key. and where eq n

$$
d=e^{-1} \operatorname{mos} \phi(n)
$$

statituas lutpecs
should be satisfy.
ot Setep 3 dil letive is atritith lothuto A.
10* A'must bo relatively primé to $\phi($ 而 $)$
Aaspothotaco

$$
\begin{aligned}
& \phi(n)=\phi(p \times q) \\
& \text { rellat } \\
& =(p-1) \times(q-1) \quad 0 \text { of }
\end{aligned}
$$

18. we woreatese a deoriotion key id ot

$$
\begin{aligned}
& \alpha=e^{-1}(\bmod \phi(n)) \\
& \alpha=\frac{1}{e} \\
& \alpha e=(1(\bmod \phi(n)) \quad \text { and }
\end{aligned}
$$

 bao pros 'd'vel a to multiplicofine sprribreser Pe $e(\bmod \phi(n))$ - votor crev v/mo Note eshouls olwoyp the densthan ét (n)

WWW.GRADESETTER.COM

b) (1) $p=3$ as $q=11$ calculate x

Solne

Tr \qquad arodnalie oost viduo
n is po boo gritan of is 9
(4) lace trese suturoto
hod, odmun mánor a argodo sele. stelumo

$$
\text { (a)bom Pptarrabs }=19
$$

WWW,GRADESETTER.COM

* Diffie hellman kangexchang Algor Any generator G, of the group is called primitive rootmodip. suppose G is a primitive $\operatorname{mos} P$, If $G X$ is equal to $y \operatorname{mos} p$

$$
G G^{x}=y \bmod p
$$

Then discrete logarithm or index of y is

$$
\operatorname{intex}(y)=x(\bmod \phi(P))
$$

The protocol allow too users exchange their secrete keys over and ensecure metium without any prior secrete.
setup requires:-
(i) Alic and bob gre upon, and make public two number's.
G and P
where
P is a prime and G is a primitive root mos P.

- Ale chooses a random number a, and Computes

$$
u=g^{9} \bmod (A)
$$

WWW.GRADESETTER.COM

Date -1
and send it to bob.
Rob chooses a random number B and computes

$$
\psi g^{n} \quad v=g^{b} \bmod (P)
$$

Nitonat
wa and send it to alec.
+totem
prootfy The key generated dy bob ii

$$
\begin{aligned}
& \left.a^{b}=g^{a} \bmod (\Delta)\right)^{b} \\
& u^{b}=g^{a \times b} \bmod (B)
\end{aligned}
$$

and The

$$
\begin{gathered}
g^{a} \neq\left(g^{a b o d(P)}\right)^{9} \\
-\quad v^{a}=g^{b \times a^{6}} \bmod (P)
\end{gathered}
$$

$5+x^{2}+50$
Muter

"Do not say, 'ti is morning,' and clismlss it with a name of yesterday.

A firewall is a integrated connection of security
Design to prevent uncrthorise access to a network computer system.

- Firewall isolicies-
- Pre-sefined set in to protect the isolated system from internet outside the private netwak.

THPrirate network

Policies auctioneer

- policies uses by firewalls are depending upon some properties of the packets and
the Protocol used.
- Application payload.
* Type of firewall:-
(i) Packet filter,
sis "stofecel filter's ans
(iv) Application layer filter.
(1) Stateless at filter

It does not maintain any remembers context or suede with rear. Ho packet. Nt is processing. Instead it treat each packet attempting to brand through it.
(iss) stateful:
ti t It maintainance table for every incoming packet and info within the packet.
(a) ip ats res
(b)port affress
(C) and sequence no of the packet of line Communications
WWiffitan loge no mother me Un un V.anpel un method Be

 uptob Ranigo ass 30
\& Core ns-
General studies:-
(i) All error detection and correction method only work - below a certain error rate.

- frame or codecuas length $n=m+R$
data resuintant
Check bit
(ii) Any data section having length in ens valid, we allow any ousts Ort bit
\therefore stream
(ii) Not every code wads af length in in rales
av) No of valid code wast in serif Small subset of all rovizble on bit strings of o length n.
* error Correcting on 2monp9\% $600<3$
(i) All 2^{m} pattern are legal, not all. 2^{n} patterns are legal.
(i) The basic idea if illegal pattern find the legal pattern closest to it that might be the original data.
(III) Give 2 bit string and bitwite for gives you no. of lith. that are different.
(ii) If two codecoorls are hamming dietance 'a' apart it will take ' d ' one bit error to convert one into other.
x Imp point L
(a) to detect (but not correct) apto d-errengs per length n, you need a coding scheme where codecossl are attest $d+1$, apart in hamming distance.
Then,
's'errors oan't change into another legal codes so we know there has been a error.

So, To . Correct ' d ' erroosls need code counts $2 d+1$ apart. Then, even with d-errer's bits string will be d-away from original. and $d+1$ away from the nearest legal code.
a) 4 reeled code axis, 10 bit's

$$
\begin{aligned}
& 0000000000 \\
& 0000011111 \\
& 1111100000 \\
& 11111111111.1 \text { ding }
\end{aligned}
$$

WWW.GRADESETTER.COM

Date _1

$$
\text { min. Jistanes } s,
$$

erro deted, $\rightarrow 4$
Correct: - Qd 1
Q) n-station, each s:

What or the anole shal onl, on stutia
c) mas: $\Rightarrow 11001001$ generater molynomial $x^{3}+1$ What mesoge $\frac{8}{8}$ outs be tranemittal
sola core 11001001
10) Distance b/wo tuo station i' m ando n,

frams ar k-bit'ilongh, procesin apiodelay per kilo meter in \& sec. channel canacit/bit ratelbankul
 requires fer sequence no field's in a for frame with max wingde when a slitis coindores form x - Sivol 1 C
8019
Ctidol atren 960 WSut
a) Consiter a nettuante witho Six roucter R, to 6 .

$$
1111100000
$$

$$
0000011111
$$

(1)

weights of all unveses link change tong

how may link now remain unusual
b)

OLEN

