SOLUTIONS OF
 Concepts
 of Physics

III. ©. Derma

Solutions $O \bar{F}$ CONCEPTS OF PHYSICS
 [PART-2]

By
Govind Verma
Ph.D

RAJ PUBLICATIONS

Publishers \& Distributors
Darya Ganj, New Delhi-110002

HEAT AND TEMPERATURE 23

EXERCISES

23.1

$$
\begin{aligned}
\text { Ice point } & =20^{\circ}\left(\mathrm{T}_{0}\right), \\
\text { steam point } & =80^{\circ}\left(\mathrm{T}_{100}\right) \\
\mathrm{T} & =\frac{\mathrm{T}_{1}=32^{\circ}}{\mathrm{T}_{100}-\mathrm{T}_{0}} \times 100 \\
& =\frac{32-20}{80-20} \times 100 \\
& =\frac{12}{60} \times 100=\frac{120}{6}=20^{\circ} \mathrm{C}
\end{aligned}
$$

23.2 Given $P_{t r}=1.500 \times 10^{4} \mathrm{~Pa}$

$$
P=2.050 \times 10^{4} \mathrm{~Pa}
$$

We know, for constant volume gas thermometer

$$
\begin{aligned}
T & =\frac{P}{P_{t r}} \times 273.16 \mathrm{~K} \\
& =\frac{2.050 \times 10^{4}}{1.5 \times 10^{4}} \times 273.16 \\
& =373.31
\end{aligned}
$$

23.3 Pressure measured at

$$
\begin{aligned}
M_{p} & =2.2 \times \text { Pressure at triple } \\
\mathrm{T} & =\frac{P}{P_{t r}} \times 273.16 \\
& =\frac{2.2 \times P_{t r}}{P_{t r}} \times 273.16 \\
& =2.2: 273.16=600.952 \mathrm{~K} \\
& =601 \mathrm{~K}
\end{aligned}
$$

23.4 Given, $P_{t r}=40 \times 10^{3} \mathrm{~Pa}, \mathrm{P}=$?

$$
\mathrm{T}=100^{\circ} \mathrm{C}=373 \mathrm{~K}
$$

$$
T=\frac{P}{P_{t r}} \times 273.16
$$

$$
\Rightarrow \quad P=\frac{T \times P_{t r}}{273.16}=\frac{373 \times 40 \times 10^{3}}{273.16}
$$

$$
23.5
$$

$$
\begin{aligned}
&=54620 \mathrm{~Pa} \\
&=54.6 \times 10^{3} \mathrm{~Pa}=55 \mathrm{KPa} \\
& \mathrm{P}_{1}=70 \mathrm{KPa} \quad \mathrm{P}_{2}=? \\
& \mathrm{~T}_{1}=273 \mathrm{~K} \quad \mathrm{~T}_{2}=373 \mathrm{~K} \\
& \mathrm{~T}_{1}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{t r}} \times 273.16 \\
& \Rightarrow \quad 273=\frac{70}{\mathrm{P}_{t r}} \times 10^{3} \times 273.16 \\
& \Rightarrow \quad \mathrm{P}_{t r}=\frac{70 \times 273.16 \times 10^{3}}{273} \\
& \Rightarrow \quad \text { Again, } \quad \mathrm{T}_{2}=\frac{\mathrm{P}_{2} \times 273.16}{\mathrm{P}_{t r}} \\
& \Rightarrow \quad 373=\frac{\mathrm{P}_{2} \times 273 \times 273.16}{70 \times 273.16 \times 10^{3}} \\
& \Rightarrow \quad \mathrm{P}_{2}=\frac{373 \times 70 \times 10^{3}}{273}=95.6 \mathrm{KPa} \\
& \Rightarrow \quad
\end{aligned}
$$

23.6 Given

$$
\begin{aligned}
P_{\text {ice point }} & =P_{0}=80 \mathrm{~cm} \mathrm{Hg} \\
\mathrm{P}_{\text {steam point }} & =\mathrm{P}_{100}=90 \mathrm{~cm} \mathrm{Hg} \\
\mathrm{P}_{0} & =100 \mathrm{~cm} \\
\mathrm{~T} & =\frac{\mathrm{P}-\mathrm{P}_{0}}{\mathrm{P}_{100}-\mathrm{P}_{0}} \times 100^{\circ} \mathrm{C} \\
& =\frac{80-100}{90-100} \times 100 \\
& =\frac{20}{10} \times 100=200^{\circ} \mathrm{C}
\end{aligned}
$$

23.7

$$
\begin{aligned}
T^{\prime} & =\frac{V}{V-V^{\prime}} \times T_{0^{\prime}} \\
T_{0} & =273 \mathrm{~K} \\
\mathrm{~V} & =1800 \mathrm{cc}
\end{aligned}
$$

23.15 (a) Length at $16^{\circ} \mathrm{C}=\mathrm{L}$,

$$
\begin{aligned}
t_{1} & =16^{\circ} \mathrm{C}, \quad t_{2}=46^{\circ} \mathrm{C} \\
\alpha & =1.1 \times 10^{-5} /{ }^{\circ} \mathrm{C} \\
\Delta \mathrm{~L} & =\mathrm{L} \alpha \Delta \theta=\mathrm{L} \times 1.1 \times 10^{-5} \times 30
\end{aligned}
$$

$$
\% \text { of error }=\left(\frac{\Delta L}{L} \times 100\right) \%
$$

$$
\begin{aligned}
& =\left(\frac{L \alpha \Delta \theta}{L} \times 100\right) \% \\
& =\left[1.1 \times 10^{-5} \times 30 \times 100\right] \% \\
& =3.3 \times 10^{-2} \%=0.033 \%
\end{aligned}
$$

(b)

$$
t_{2}=6^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
\% \text { error } & =\left(\frac{\Delta L}{L} \times 100\right) \% \\
& =\left(\frac{L \alpha \Delta \theta}{L} \times 100\right) \% \\
& =-1.1 \times 10^{-5} \times 10 \times 100 \% \\
& =-1.1 \times 10^{-2}=-0.011 \%
\end{aligned}
$$

23.16

$$
\begin{aligned}
\mathrm{T}_{1} & =20^{\circ} \mathrm{C} \\
\Delta \mathrm{~L} & =0.055 \mathrm{~mm} \\
& =0.055 \times 10^{-3} \mathrm{~m} \\
\mathrm{~T}_{2} & =? \\
\alpha_{\text {st }} & =11 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

we know

$$
\Delta \mathrm{L}=\mathrm{L}_{0} \alpha \Delta \mathrm{~T}
$$

$$
\left.\Rightarrow 0.055 \times 10^{-3}=1 \times 11 \times 10^{-6} \times \mathrm{T}_{1} \pm \mathrm{T}_{2}\right)
$$

$$
\Rightarrow \quad 5 \times 10^{-3}=\left(20 \pm \mathrm{T}_{2}\right) \times 10^{-3}
$$

$$
\Rightarrow \quad 20 \pm T_{2}=5
$$

$$
\Rightarrow \quad T_{2}=20+5=25^{\circ} \mathrm{C}
$$

or

$$
20-5=15^{\circ} \mathrm{C}
$$

Hence the experiment can be performed from 15° to $25^{\circ} \mathrm{C}$
23.17

$$
\begin{aligned}
& f_{0}{ }^{\circ} \mathrm{C}=0.998 \mathrm{~g} / \mathrm{cm}^{3} \\
& f_{4}{ }^{\circ} \mathrm{C}=1 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{L_{40 \mathrm{~A} l}}{L_{40 s t}}=\frac{L_{0 \mathrm{~A} l}}{L_{0 s t}} \times \frac{\left(1+2.3 \times 10^{-5} \times 40\right)}{\left(1+1.1 \times 10^{-5} \times 40\right)} \\
& =\frac{0.99977 \times 1.00092}{1.00044}=1.0002496 \\
& \text { (c) } \frac{\mathrm{L}_{100 \mathrm{~A} l}}{\mathrm{~L}_{100 s t}}=\frac{\mathrm{L}_{0 \mathrm{~A} l}\left(1+\alpha_{\mathrm{A} l} \times 100\right)}{\mathrm{L}_{0 s t}\left(1+\alpha_{s t} \times 100\right)} \\
& =\frac{0.99977 \times 1.0023}{1.0023}=1.00096
\end{aligned}
$$

We know, $f_{0}{ }^{\circ} \mathrm{C}=\frac{f_{4}{ }^{\circ} \mathrm{C}}{1+\gamma \Delta t}$
$\Rightarrow \quad 0.998=\frac{1}{1+\gamma .4}$
$\Rightarrow \quad 1+4 \gamma=\frac{1}{0.998}$
$\Rightarrow \quad .4 \gamma=\left(\frac{1}{0.998}\right)-1$
$\Rightarrow \quad \gamma=0.0005=5 \times 10^{-4}$
As density decreases

$$
\gamma=-5 \times 10^{-4}
$$

23.18

Aluminium Rod
$\alpha_{\mathrm{Fe}}=12 \times 10^{\mathrm{L}_{\mathrm{Fe}}} \times{ }^{\circ} \mathrm{C} \quad \alpha_{\mathrm{Al}}=23 \times 1 \mathrm{~L}_{\mathrm{A} l}{ }^{-6} /{ }^{\circ} \mathrm{C}$ Since the difference in length is independent of temperature the difference always remains constant

$$
\begin{align*}
\mathrm{L}_{\mathrm{Fe}} & =\mathrm{L}_{\mathrm{Fe}}\left(1+\alpha_{\mathrm{Fe}} \times \Delta \mathrm{T}\right) \tag{1}\\
\mathrm{L}_{\mathrm{A} l}^{\prime} & =\mathrm{L}_{\mathrm{A} l}\left(1+\alpha_{\mathrm{A} l} \times \Delta \mathrm{T}\right) \tag{2}
\end{align*}
$$

Given

$$
\mathrm{L}_{\mathrm{Fe}_{e}^{\prime}}-\mathrm{L}_{\mathrm{Al} l}^{\prime}=\mathrm{L}_{\mathrm{Fe}}-\mathrm{L}_{\mathrm{A} l}+\mathrm{L}_{\mathrm{Fe}} \times \alpha_{\mathrm{Fe}} \Delta \mathrm{~T}
$$

$$
-\mathrm{L}_{\mathrm{A} l} \times \alpha_{\mathrm{A} l} \times \Delta \mathrm{T}
$$

$$
\mathrm{L}_{\mathrm{Fe}}^{\prime}-\mathrm{L}_{\mathrm{Al}}^{\prime}=\mathrm{L}_{\mathrm{Fe}}-\mathrm{L}_{\mathrm{Al} l}
$$

Hence $\mathrm{L}_{\mathrm{Fe}} \alpha_{\mathrm{Fe}}=\mathrm{L}_{\mathrm{Al} l} \alpha_{\mathrm{A} l}$

$$
\frac{\mathrm{L}_{\mathrm{F} e}}{\mathrm{~L}_{\mathrm{A} l}}=\frac{23}{12} \text { Ans. }
$$

23.19

$$
\begin{aligned}
g_{1} & =9.8 \mathrm{~m} / \mathrm{s}^{2}, \\
g_{2} & =9.788 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{~T}_{1} & =\frac{2 \pi \sqrt{l_{1}}}{\sqrt{g_{1}}} \\
\mathrm{~T}_{2} & =\frac{2 \pi \sqrt{l_{2}}}{\sqrt{g_{2}}} \\
& =\frac{2 \pi \sqrt{l_{2}(1+\alpha \mathrm{T})}}{\sqrt{g_{2}}} \\
\alpha_{\text {steel }} & =12 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
\mathrm{Q}_{1} & =20^{\circ} \mathrm{C} \\
\mathrm{Q}_{2} & =? \\
\mathrm{~T}_{1} & =\mathrm{T}_{2} \\
\Rightarrow \quad \frac{2 \pi \sqrt{l_{1}}}{\sqrt{g_{1}}} & =\frac{2 \pi \sqrt{l_{1}(1+\alpha \Delta \mathrm{T})}}{\sqrt{g_{2}}} \\
\left.\Rightarrow \quad \sqrt{\left(\frac{l_{1}}{g_{1}}\right.}\right) & =\frac{\left.\sqrt{l_{1}(1+\alpha \Delta \mathrm{T}}\right)}{\sqrt{g_{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{199964}{904}=20.012 \mathrm{c} \\
& \begin{array}{l}
=30\left(1-\alpha_{g} \Delta \theta\right) \\
\frac{\left.9 \times 10^{-6} \times 40\right)}{\left.\times 10^{-6} \times 40\right)}
\end{array} \\
& 164 \\
& \text { ? } \\
& \text { 23.24 Given, } \\
& \begin{aligned}
V_{g} & =10 \times 10 \times 10=1000 \mathrm{cc} . \\
\Delta T & =10^{\circ} \mathrm{C}
\end{aligned} \\
& \Delta T=10^{\circ} \mathrm{C} \\
& V_{H_{g}}^{\prime}-V_{g}^{\prime}=1.6 \mathrm{~cm}^{3} \\
& \alpha_{g}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
& \gamma_{\mathrm{Hg}}=\text { ? } \\
& \gamma_{g}=3 \times 6.5 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
& V_{\mathrm{H}_{g}}^{\prime}=V_{\mathrm{H}_{g}}\left(1+\gamma_{\mathrm{Hg}_{g}} \Delta \mathrm{~T}\right) \\
& V_{g}^{\prime}=V_{g}\left(1+\gamma_{g} \Delta T\right) \\
& =V_{g}^{\prime}-V_{H_{g}}^{\prime} \\
& V_{H g}^{\prime}-V_{g}^{\prime}=V_{H_{g}}^{g}-V_{g}^{g}+V_{H_{g}} \gamma_{\mathrm{Hg}} \Delta T \\
& \begin{array}{r}
\left.1.6=1000 \times \gamma_{\mathrm{H}_{g}} \times 10-1000_{g} \gamma_{g} \Delta \mathrm{~T}\right) \\
\times 6.5 \times 3 \times 10^{-6} \times 10
\end{array} \\
& \gamma_{\mathrm{Hg}}=\frac{1.6+19.5 \times 10^{-2}}{10000} \\
& =\frac{1.6+0.195}{10000}=\frac{1.795}{10000} \\
& =1.795 \times 10^{-4} \\
& =1.8 \times 10^{-4} /{ }^{\circ} \mathrm{C} \\
& \text { 23.25 Given } f_{w}=880 \mathrm{~kg} / \mathrm{m}^{3} \text {, } \\
& f_{b}=900 \mathrm{~kg} / \mathrm{m}^{3} \\
& T_{1}=0^{\circ} \mathrm{C} \text {, } \\
& \gamma_{w}=1.2 \times 10^{-3} /{ }^{\circ} \mathrm{C}, \\
& \gamma_{b}=1.5 \times 10^{-3} /{ }^{\circ} \mathrm{C} \\
& \text { The sphere begins to sink when } \\
& \Rightarrow(m g)_{\text {sphere }}=\text { displaced water } \\
& V f_{w g}^{\prime}=V f_{b}^{\prime} g \\
& \Rightarrow \quad \frac{f_{w}}{1+\gamma_{w} \Delta \theta}=\frac{f_{b}}{1+\gamma_{b} \Delta \theta} \\
& \begin{array}{l}
\Rightarrow \frac{880}{1+1.2 \times 10^{-3} \Delta \theta}=\frac{900}{1+1.5 \times 10^{-8} . \Delta \theta} \\
\Rightarrow 880+880 \times 1.5 \times 10^{-3} \Delta \theta
\end{array} \\
& =900+900 \times 1.2 \times 10^{-3} \Delta \theta \\
& \begin{aligned}
& \Rightarrow\left(880 \times 1.5 \times 10^{-9}-900 \times 1.2 \times 10^{-3}\right) \Delta \theta \\
&=20
\end{aligned} \\
& \Rightarrow(1320-1080) \times 10^{-3} \Delta \theta=20 \\
& \Rightarrow \Delta \theta=83.3^{\circ} \mathrm{C} \\
& \begin{aligned}
& T_{2}-T_{1} \\
\Rightarrow \quad T_{2} & =83 \\
& =83^{\circ}
\end{aligned} \\
& \Rightarrow \mathrm{T}_{2}-0^{\circ}=83 \\
& \text { A longitudinal strain develops if and only } \\
& \text { if there is an opposition to the expansion. } \\
& \begin{array}{l}
\text { Since there is no opposition in this case } \\
\text { the longitudinal strain }
\end{array} \\
& \text { the longitudinal strain }=\text { zero. }
\end{aligned}
$$

Heat and Temperature

$$
\begin{aligned}
& \begin{aligned}
V_{g} & =10 \times 10 \times 10=1000 \mathrm{cc} . \\
\Delta T & =10^{\circ} \mathrm{C}
\end{aligned} \\
& \Delta T=10^{\circ} \mathrm{C} \\
& V_{H_{g}}^{\prime}-V_{g}^{\prime}=1.6 \mathrm{~cm}^{3} \\
& \alpha_{g}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
& \gamma_{\mathrm{Hg}}=\text { ? } \\
& \gamma_{g}=3 \times 6.5 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
& V_{\mathrm{H}_{g}}^{\prime}=V_{\mathrm{H}_{g}}\left(1+\gamma_{\mathrm{Hg}_{g}} \Delta \mathrm{~T}\right) \\
& V_{g}^{\prime}=V_{g}\left(1+\gamma_{g} \Delta T\right) \\
& \text { 23.27 Given, } \begin{aligned}
\theta_{1} & =20^{\circ} \mathrm{C}, \\
\alpha_{\text {steel }} & =1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}
\end{aligned} \theta_{2}=50^{\circ} \mathrm{C} \\
& \text { Longitudinal strain }=\text { ? } \\
& \text { Strain }=\frac{\Delta \mathrm{L}}{\mathrm{~L}}-\frac{\mathrm{L} \alpha \Delta \theta}{\mathrm{~L}}=\alpha \Delta \theta \\
& =1.2 \times 10^{-5} \times(50-20) \\
& =1.2 \times 10^{-5} \times 30 \\
& =36 \times 10^{-5}=3.6 \times 10^{-4} \\
& \text { The strain is opposite to the direction of } \\
& \text { expansion. }
\end{aligned}
$$

23:28 Given

$$
\text { Given } \begin{align*}
& \mathrm{A}=0.5 \mathrm{~mm}^{2}=0.5 \times 10^{-6} \mathrm{~m}^{2} \tag{2}\\
& \mathrm{~T}_{1}=20^{\circ} \mathrm{C}, \mathrm{~T}_{2}=0^{\circ} \mathrm{C} \\
& \alpha_{s}=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C} \\
& \gamma=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} \\
& \text { Decrease in length due to compression } \\
&=\mathrm{L} \alpha \Delta \theta \tag{1}\\
& \gamma=\frac{\text { stress }}{\text { strain }}=\frac{\mathrm{F}}{\mathrm{~A}} \times \frac{\mathrm{L}}{\Delta \mathrm{~L}}
\end{align*}
$$

$$
\Rightarrow \quad \Delta \mathrm{L}=\frac{\mathrm{FL}}{\mathrm{AY}}
$$

Tension is developed due to (1) and (2).
Equating (1) and (2)

$$
\begin{aligned}
\mathrm{L} \alpha \Delta \theta & =\frac{\mathrm{FL}}{\mathrm{AY}} \\
\Rightarrow \quad \mathrm{~F} & =\alpha \Delta \theta \mathrm{AY} \\
& =1.2 \times 10^{-5} \times(20-0) \\
& =1.2 \times 0.5 \times 10^{-6} \times 2 \times 10^{11} \\
\theta_{1} & =200^{\circ} \mathrm{C}, \\
\mathrm{~A} & =2 \mathrm{~mm}^{2}=2 \times 10^{-6} \mathrm{~m}^{2} \\
\alpha_{\text {steel }} & =12 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
\mathrm{Y}_{\text {steel }} & =2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Force exerted on the clamps = ?

$$
\begin{aligned}
\frac{\mathrm{F} / \mathrm{A}}{\text { strain }} & =\mathrm{Y} \\
\mathrm{~F} & =\frac{\mathrm{Y} \times \Delta \mathrm{L}}{\mathrm{~L}} \times \mathrm{A} \\
& =\frac{\mathrm{YL} \alpha \Delta \theta \mathrm{~A}}{\mathrm{~L}}=\mathrm{YA} \alpha \Delta \theta \\
& =2 \times 10^{11} \times 2 \times 10^{-6} \times 12 \\
& =48 \times 80 \times 10^{-1}=384 \mathrm{~N}
\end{aligned}
$$

23.30 Let the initial length of the system at $0^{\circ} \mathrm{C}$

$$
=l_{0}^{\circ}
$$

When temperature changes by θ
Final length of the steel at system temperature

$$
L=l_{0}(1+2 \alpha \Delta 6)
$$

But the total strain of the system

$$
=\frac{\text { total stress of systern }}{\text { total Young's modulus of system }}
$$

Now, total stress due to two steel rod

+ stress due to aluminium

$$
=\gamma_{s} \alpha_{s} \theta+\gamma_{s} \alpha_{s} \theta+\gamma_{A l} \alpha_{A l} \theta
$$

$$
=2 \gamma_{s} \alpha_{s} \theta+\gamma_{A l} \alpha_{A l}{ }^{\theta}
$$

Now Young's modulus system

$$
=\gamma_{s}+\gamma_{s}+\gamma_{A l}=2 \gamma_{s}+\gamma_{\mathrm{Al}}
$$

$$
\therefore \text { Strain of system }=\frac{2 \gamma_{s} \alpha_{s} \theta+\gamma_{A l} \alpha_{A l} \theta}{2 \gamma_{s}+\gamma_{A l}}
$$

$$
\Rightarrow \frac{l-l}{l_{0}}=\frac{2 \gamma_{s} \alpha_{s} \theta+\gamma_{\mathrm{A} l} \alpha_{\mathrm{A} l} \theta}{2 \gamma_{s}+\gamma_{\mathrm{A} l}}
$$

$$
\Rightarrow \quad \therefore l=l_{0}\left[1+\frac{2 \gamma_{s} \alpha_{s} \theta+2 \gamma_{\mathrm{A} l} \alpha_{\mathrm{A} l} \theta}{2 \gamma_{s}+\gamma_{\mathrm{A} l}}\right]
$$

23.31 The ball tries to expand its volume but it is kept at a constant volume. So the stress arises

$$
\begin{aligned}
\frac{P}{\Delta V / V} & =B \\
\Rightarrow \quad P & =B \frac{\Delta V}{V}=B \times \gamma \Delta \theta \\
& =B \times 3 \alpha \Delta \theta \\
& =1.6 \times 10^{11} \times 3 \times 12 \\
& =1.6 \times 3 \times 12 \times 10^{-6} \times(120-20) \\
& =57.6 \times 10^{11} \times 10^{-6}=5.8 \times 10^{8} \mathrm{pa}
\end{aligned}
$$

23.32 Given, $I_{0}=$ moment of inertia at $0^{\circ} \mathrm{C}$ $\alpha=$ Coeffcient of inertia expansion
To prove $\quad I=I_{0}(1+2 \alpha \theta)$
Let the temperature changes to θ from $0^{\circ} \mathrm{C}$

$$
\Delta T=\theta
$$

Let R_{0} be the radius of gyration
Now

$$
R_{0}=R(1+\alpha \theta)
$$

$$
I_{0}=M R^{2} \text { where } M \text { is the mass }
$$

Now $\quad I=M R^{2}=M R^{2}(1+\alpha \theta)^{2}$
[by binomial expansion and neglecting $\alpha_{2} \theta_{2}$ which is a very small value]

$$
=M R^{2}(1+2 \alpha \theta)
$$

at $5^{\circ} \mathrm{C}$,

$$
\% \text { change }=\left(\frac{T_{2}}{T_{1}}-1\right) \times 100
$$

$$
=0.0959 \% \approx 9.6 \times 10^{-2} \%
$$

23.34 Given, $\mathrm{T}_{1}=20^{\circ}$,

$$
\Delta \mathrm{T}=30^{\circ} \mathrm{C}, \quad \alpha=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}
$$

ω remains constant
(i) $\omega=\frac{\mathrm{V}}{\mathrm{R}}$
(ii) $\omega=\frac{\mathrm{V}^{\prime}}{\mathrm{R}^{\prime}}$

Now,

$$
R^{\prime}=R(1+\alpha \Delta \theta)
$$

$=R+R \times 12 \times 10^{-5} \times 30$
$=1,00036^{\prime} R^{\prime}$
From (i) and (ii)

$$
\begin{aligned}
\frac{\mathrm{V}}{\mathrm{R}} & =\frac{\mathrm{V}^{\prime}}{\mathrm{R}^{\prime}}=\frac{\mathrm{V}^{\prime}}{1.00036 \mathrm{R}} \\
\Rightarrow \quad \mathrm{~V}^{\prime} & =1.00036 \mathrm{~V} \\
\% \text { change } & =\frac{(1.00036 \mathrm{~V}-\mathrm{V})}{\mathrm{V}} \times 100 \\
& =0.00036 \times 100 \\
& =3.6 \times 10^{-2} \%
\end{aligned}
$$

'o
 $=$

KINETIC THEORY OF GASES 24

EXERCISES

24.2 We know,

$$
\begin{aligned}
n & =\frac{P V}{R T}=\frac{1 \times 1 \times 10^{-3}}{0.082 \times 273} \\
& =\frac{10^{-3}}{22.4}=\frac{1}{22400}
\end{aligned}
$$

No. of molecules

$$
\begin{aligned}
& =0.023 \times 10^{28} \times \frac{1}{22400} \\
& =2.688 \times 10^{-4} \times 10^{23} \\
& =2.688 \times 10^{19}
\end{aligned}
$$

24.3

$$
\begin{aligned}
V & =1 \mathrm{~cm}^{3}, \quad \mathrm{~T}=0^{\circ} \mathrm{C}, \\
P & =10^{-5} \mathrm{~mm} \text { of } \mathrm{Hg} \\
n & =\frac{P V}{R T}=\frac{\rho g h \times V}{R T} \\
& =\frac{13.6 \times 980 \times 10^{-6} \times 1}{8.31 \times 273} \\
& =5.874 \times 10^{-13}
\end{aligned}
$$

No. of molecules

$$
\begin{aligned}
& =N \times n \\
& =6.023 \times 10^{23} \times 5.874 \times 10^{-13} \\
& =35.384 \times 10^{10} \\
& =3.538 \times 10^{11}
\end{aligned}
$$

24.4

$$
n=\frac{P V}{R T}=\frac{1 \times 1 \times 10^{-3}}{0.082 \times 273}=\frac{10^{-8}}{22.4}
$$

$$
\begin{aligned}
\text { mass } & =\frac{\left(10^{-3} \times 32\right) g}{224} \\
& =1.428 \times 10^{-3} \mathrm{~g} \\
& =1.428 \mathrm{mg}
\end{aligned}
$$

24.5 Since mass is same

$$
n_{1}=n_{2}=n
$$

$$
\begin{aligned}
& \underset{\substack{600 \mathrm{k}} \underset{\mathrm{P}_{2}}{2 \mathrm{v}_{0}} \sum_{\substack{300 \mathrm{k} \\
\mathrm{P}_{1}}}^{\mathrm{v}_{0}}}{\mathrm{P}_{1}=\frac{n \mathrm{R} \times 300}{\mathrm{~V}_{0}}} \\
& \mathrm{P}_{2}=\frac{n \mathrm{R} \times 600}{2 \mathrm{~V}_{0}} \\
& \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{n \mathrm{R} \times 300}{\mathrm{~V}_{0}} \times \frac{2 \mathrm{~V}_{0}}{n \mathrm{R} \times 600}=1: 1
\end{aligned}
$$

24.6

$$
\begin{aligned}
\mathrm{V} & =250 \mathrm{cc}=250 \times 10^{-8} . l \\
\mathrm{P} & =10^{-8} \mathrm{~mm}=10^{-8} \times 10^{-8} \mathrm{~m} \\
& =\left(10^{-6} \times 13600 \times 10\right) \\
& =136 \times 10^{-3} \mathrm{Pascal} \\
\mathrm{~T} & =27^{\circ} \mathrm{C}=300 \mathrm{~K} \\
n & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{136 \times 10^{-3} \times 250 \times 10^{-8}}{8.3 \times 300} \\
& =\frac{136 \times 250 \times 10^{-6}}{8.3 \times 300}
\end{aligned}
$$

No. of molecules

$$
\begin{aligned}
& =\frac{136 \times 250}{8.3 \times 300} \times 10^{-6} \times 6 \times 10^{23} \\
& =81 \times 10^{17}=0.81 \times 10^{15}
\end{aligned}
$$

Here
24.14 Avs
24.11 According to question, tube divided in th ratio 1:3. So ratio at volume $=1: 3$

From the formula $\mathrm{PV}=n \mathrm{RT}$
So $\frac{P_{2}}{P_{1}}=\frac{V_{2}}{V_{1}}=3: 1$
24.12 r.m.s. velocity of Hydrogen molecule $=$?

$$
\begin{aligned}
\mathrm{T} & =300 \mathrm{~K}, \mathrm{R}=8.3 \\
\mathrm{M} & =2 \mathrm{~g}=2 \times 10^{-3} \mathrm{~kg} \\
\mathrm{C} & =\frac{\sqrt{3 \mathrm{RT}}}{\sqrt{\mathrm{M}}} \\
& =\frac{\sqrt{3 \times 8.3 \times 300}}{\sqrt{2 \times 10^{-3}}} \\
& =1932.6 \mathrm{~m} / \mathrm{s} \\
& =\sim 1930 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

24.15
24.

Let the temperature at the

$$
\mathrm{C}=2 \times 1932.6 \text { is } \mathrm{T}^{\mathrm{v}}
$$

Then $2 \times 1932.6=\frac{\sqrt{3 \times 9.3 \times \mathrm{T}^{\prime}}}{\sqrt{2 \times 10^{-3}}}$
$\Rightarrow(2 \times 1932.6)^{2}=\frac{3 \times 8.3 \times \mathrm{T}^{4}}{2 \times 10^{-3}}$
$\Rightarrow \frac{(2 \times 1932.6)^{2} \times 2 \times 10^{-3}}{3 \times 8.3}=\mathrm{T}^{\prime}$
$\Rightarrow \quad \mathrm{T}^{\prime}=1199.98$ $\approx 1200 \mathrm{~K}$

WWW.GRADESETTER.COM

Kinetic Theory of Gases
24.13

$$
\begin{aligned}
V_{\text {r.m.s }} & =\frac{\sqrt{3 \rho}}{\sqrt{\rho}} \\
P & =10^{5} \mathrm{~Pa}=1 \mathrm{~atm} \\
& =\frac{\sqrt{3 \times 10^{5} \times 10^{-3}}}{\sqrt{1.77 \times 10^{-4}}} \\
& =1301.8=1302 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

24.14 Average K.E. $=\frac{3}{2}$

$$
\begin{aligned}
& \frac{3}{2} \mathrm{KT}=0.04 \times 1.6 \times 10^{-19} \\
& \Rightarrow \frac{3}{2} \times 1.38 \times 10^{-28} \times \mathrm{T} \\
&=0.04 \times 1.6 \times 10^{-19} \\
& \Rightarrow \quad \mathrm{~T}=\frac{2 \times 0.04 \times 1.6 \times 10^{-19}}{3 \times 1.38 \times 10^{-23}} \\
&=0.0309178 \times 10^{4} \\
&=309.178=310 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{avg}} & =\frac{\sqrt{8 R \mathrm{~T}}}{\sqrt{\pi \mathrm{M}}}=\frac{\sqrt{8 \times 8.83 \times 300}}{\sqrt{3.14 \times 0.032}} \\
& =445.25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
T=\frac{\text { distance }}{\text { speed }}=\frac{6400000 \times 2 \mathrm{sec}}{445.25}
$$

$$
=\frac{28747.83 \mathrm{hrs}}{3600}
$$

$$
=7.985 \mathrm{hrs}=8 \mathrm{hrs}
$$

24.16

$$
\begin{aligned}
\mathrm{M} & =4 \times 10^{-3} \mathrm{~kg} \\
V_{\mathrm{avg}} & =\frac{\sqrt{8 \mathrm{RT}}}{\sqrt{\pi \mathrm{M}}} \\
& =\frac{\sqrt{8 \times 8.3 \times 273}}{\sqrt{3.14 \times 4 \times 10^{-8}}} \\
& =1201.35
\end{aligned}
$$

Momentum
24.17

$$
\begin{aligned}
& =\mathrm{M} \times \mathrm{V}_{\text {avg }} \\
& =6.64 \times 10^{-27} \times 1201.35 \\
& =7.97 \times 10^{-24} \\
& =8 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s} \\
V_{\mathrm{avg}} & =\frac{\sqrt{8 \mathrm{RT}}}{\sqrt{\pi \mathrm{M}}}=\sqrt{\frac{8 \times 8.3 \times 300}{3.14 \times 0.032}}
\end{aligned}
$$

Now, $\frac{8 \mathrm{RT}_{1}}{\pi \times 2}=\frac{8 \mathrm{RT}_{2}}{\pi \times 4}$
$\Rightarrow \quad \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{1}{2}$.
24.18 Mean speed of the molecule $=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}$

Escape velocity

$$
\begin{aligned}
& =\sqrt{2 g r} \\
\frac{\sqrt{8 \mathrm{RT}}}{\sqrt{\pi \mathrm{M}}} & =\sqrt{2 g r} \\
\Rightarrow \quad \frac{8 \mathrm{RT}}{\pi \mathrm{M}} & =2 g r \\
\Rightarrow \quad \mathrm{~T} & =2 g r \frac{\pi \mathrm{M}}{8 \mathrm{R}} \\
= & \frac{2 \times 9.8 \times 6400000 \times 3.14 \times 2 \times 10}{8 \times 8.3} \\
= & 11863.9=11800 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

24.19 We know

$$
\begin{aligned}
\mathrm{V}_{\mathrm{avg}} & =\frac{\sqrt{8 \mathrm{RT}}}{\sqrt{\pi \mathrm{M}}} \\
\frac{\mathrm{~V}_{\mathrm{avg}} \mathrm{H}_{2}}{\mathrm{~V}_{\mathrm{avg}} \mathrm{~N}_{2}} & =\frac{\sqrt{8 \times \mathrm{RT}}}{\sqrt{\pi \times 2}} \times \frac{\sqrt{\pi \times 28}}{\sqrt{8 \mathrm{RT}}} \\
& =\sqrt{\frac{28}{2}}=\sqrt{14}=3.74
\end{aligned}
$$

24.20 The leftside of the container has a gas having a molecular weight $=\mathrm{M}_{1}$, and right part has molecular weight $=M_{2}^{\prime}$.
The temperature of both left and right chambers are equal since the separator is diathermic

$$
\begin{array}{rlrl}
& & \frac{\sqrt{3 \mathrm{RT}}}{\sqrt{\mathrm{M}_{1}}} & =\frac{\sqrt{8 \mathrm{RT}}}{\sqrt{\pi \mathrm{M}_{2}}} \\
\Rightarrow & \frac{3 \mathrm{RT}}{\mathrm{M}_{1}} & =\frac{8 \mathrm{RT}}{\pi \mathrm{M}_{2}} \\
\Rightarrow \quad & \frac{\mathrm{M}_{1}}{\pi \mathrm{M}_{2}} & =\frac{3}{8} \\
\Rightarrow \quad & \frac{\mathrm{M}_{1}}{\mathrm{M}_{2}} & =\frac{3 \pi}{8}=1.1775=1.18
\end{array}
$$

24.21 We have

$$
\mathrm{V}_{\text {mean }}=\frac{\sqrt{8 \mathrm{RT}}}{\sqrt{\pi \mathrm{M}}}
$$

$$
\begin{aligned}
& \text { 24.23 Given, } \\
& 10 \\
& \text { Solutions of Concepts of Physics } \quad \begin{array}{ll}
\\
\mathrm{T}_{1}=20^{\circ} \mathrm{C}=293 \mathrm{~K} \\
\mathrm{~T}_{2}=40^{\circ} \mathrm{C}=313 \mathrm{~K}
\end{array} \\
& \begin{aligned}
& =\frac{\sqrt{8 \times 8.3 \times 273}}{\sqrt{3.14 \times 2 \times 10^{-3}}} \\
& =1698.96 \\
c & =1698.96 \mathrm{~m} \\
& =\frac{1698.96}{1.38 \times 10^{-7}} \\
& =1.23 \times 10^{10}
\end{aligned} \\
& \text { Total distance }=1698.96 \mathrm{~m} \\
& \text { No. of collision }=\frac{1698.96}{1.38 \times 10^{-7}} \\
& 24.22 \\
& P=1 \mathrm{~atm}=10^{5} \text { Pascal } \\
& T=300 K \\
& M=2 g=2 \times 10^{-9} \mathrm{~kg} \\
& \text { (a) } \quad V_{a v g}=\frac{\sqrt{8 R T}}{\sqrt{\pi M}} \\
& =\frac{\sqrt{8 \times 8.3 \times 300}}{\sqrt{3.14 \times 2 \times 10^{-3}}} \\
& =\frac{\sqrt{8 \times 8.3 \times 300 \times 10^{3}}}{\sqrt{3.14 \times 2}} \\
& =1781.004=1780 \mathrm{~m} / \mathrm{s} \\
& \text { (b) When the molecules strike at an angle } \\
& 45^{\circ} \text {, } \\
& \text { force exerted } \\
& =m V \cos 45^{\circ}-\left(-m V \cos 45^{\circ}\right) \\
& =2 \mathrm{mV} \cos 45^{\circ} \\
& =\frac{2 m V}{\sqrt{2}}=\sqrt{2} m V \\
& \text { Number of molecules striking per unit } \\
& \text { area } \\
& =\frac{\text { force }}{\sqrt{2} m V \times \text { Area }} \\
& =\frac{\text { Pressure }}{\sqrt{2} m V} \\
& =\frac{\frac{10^{5}}{\sqrt{2} \times 2 \times 10^{-3} \times 1780}}{6 \times 10^{23}} \\
& =\frac{3 \times 10^{31}}{2516.92} \\
& =1.19 \times 10^{-8} \times 10^{31} \\
& =1.19 \times 10^{28}=1.2 \times 10^{28} \\
& P_{1}=200 \mathrm{KPa} \\
& =2 \times 10^{5} \mathrm{~Pa} \text {, }
\end{aligned}
$$

$\mathrm{P}_{2}=10^{5} \mathrm{~Pa}$
$\mathrm{~T}_{1}=\mathrm{T}_{2}=\mathrm{T}$
$\mathrm{V}_{1}=\frac{4}{3 \pi}\left(2 \times 10^{-3}\right)^{3}$
$\mathrm{~V}_{2}=4 / 3 \pi r^{3}$

$$
r=\text { ? }
$$

$$
\text { We know, } \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$$
\Rightarrow \frac{1.33 \times 10^{5} \times 4 / 3 \pi \times\left(2 \times 10^{-3}\right)^{3}}{T_{1}}
$$

$$
=\frac{10^{5} \times 4 / 3 \pi r^{3}}{\tilde{T}_{2}}
$$

$$
\Rightarrow \quad=1.33 \times 8 \times 10^{5} \times 10^{-9}
$$

$$
=10^{5} \times r^{3}
$$

$$
\Rightarrow \quad r=\sqrt[s]{10.64 \times 10^{-9}}
$$

$$
=2.19 \times 10^{-3}=2.2 \mathrm{~mm}
$$

$$
24.26
$$

$$
P_{1}=2 \mathrm{~atm}=2 \times 10^{5} \mathrm{~Pa}
$$

$$
\mathrm{V}_{1}=0.002 \mathrm{~m}^{3}, \mathrm{~T}_{1}=300 \mathrm{~K}
$$

$$
\Rightarrow \quad n_{1}=\frac{P_{1} V_{1}}{R T_{1}}=\frac{2 \times 10^{5} \times 0.002}{8.3 \times 300}
$$

$$
=\frac{2 \times 10^{5} \times 2 \times 10^{-9}}{8.3 \times 10^{2} \times 3}
$$

$$
=\frac{4}{8.3 \times 3}=0.1606
$$

Again,

$$
P_{2}=1 \mathrm{~atm}=10^{5} \mathrm{~Pa}
$$

$$
V_{2}=0.0005 \mathrm{~m}^{3}, \quad T_{2}=300 \mathrm{~K}
$$

$$
P_{2} V_{2}=n_{2} R T_{2}
$$

$$
\Rightarrow \quad n_{2}=\frac{P_{2} V_{2}}{R T_{2}}=\frac{10^{5} \times 0.0005}{8.3 \times 300}
$$

$$
=\frac{10^{5} \times 5 \times 10^{-4}}{8.3 \times 3 \times 10^{2}}
$$

$$
=\frac{5}{3 \times 83}=0.02
$$

$\Delta m=$ moles leaked out

$$
=0.16-0.02=0.14
$$

24.27 Given,

$$
\begin{aligned}
m & =0.040 \mathrm{~g}, \\
T & =100^{\circ} \mathrm{C}, M_{\mathrm{He}}=0.04 \mathrm{~g} \\
U & =\frac{3}{2} n R T=\frac{3}{2} \times \frac{m}{M R T}
\end{aligned}
$$

Given, $\frac{3}{2} \times \frac{m}{M} \times R \times T+12$
$=\frac{3}{2} \times \frac{m}{M} \times \mathrm{R} \times \mathrm{T}^{\mathrm{T}}$
$\Rightarrow 1.5 \times 0.01 \times 8.3 \times 373+12$
$=1.5 \times 0.01 \times 8.3 \mathrm{~T}^{0}$
$\Rightarrow \quad 58.4385=1245 \mathrm{~T}^{\circ}$
$\Rightarrow \quad \mathrm{T}^{\prime}=\frac{58.4385}{0.1245}$
$=469.3855 \mathrm{~K}$
$=196.3^{\circ} \mathrm{C} \approx 196^{\circ} \mathrm{C}$
24.28
$\mathrm{PV}^{2}=$ Constant
$\Rightarrow \quad \mathrm{P}_{1} \mathrm{~V}_{1}{ }^{2}=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{2}$
$\Rightarrow \frac{m \mathrm{RT}_{1}}{\mathrm{~V}_{1}} \times \mathrm{V}_{1}^{2}=\frac{m \mathrm{RT}_{2}}{\mathrm{~V}_{2}} \times \mathrm{V}_{2}^{2}$
$\Rightarrow \quad T_{1} V_{1}=T_{2} V_{2}$
$\Rightarrow \quad \mathrm{TV}=\mathrm{T}_{2} \times 2 \mathrm{~V}$
$\Rightarrow \quad T_{2}=\frac{T}{2}$
24.29

$$
\begin{aligned}
\mathrm{P}_{\mathrm{O}_{2}} & =\frac{n_{\mathrm{O}_{2}} \mathrm{RT}}{\mathrm{~V}} \\
\mathrm{P}_{\mathrm{N}_{2}} & =\frac{n_{\mathrm{N}_{2}} \mathrm{RT}}{\mathrm{~V}} \\
n_{\mathrm{O}_{2}} & =\frac{m}{\mathrm{M}_{\mathrm{O}_{2}}}=\frac{1.60}{32} \\
& =0.05 \\
n_{\mathrm{N}_{2}} & =\frac{m}{\mathrm{M}_{\mathrm{N}_{2}}}=\frac{2.80}{28}=0.1
\end{aligned}
$$

$$
\text { Now, } \quad \mathrm{P}_{\operatorname{mix}}=\left(\frac{n_{\mathrm{O}_{2}}+n_{\mathrm{N}_{2}}}{\mathrm{~V}}\right) \mathrm{RT}
$$

$$
P_{\text {mix }}=\frac{(0.05+0.1) \times 8.3 \times 300}{0.168}
$$

$$
=2250 \mathrm{~N} / \mathrm{m}^{2}
$$

24.30 Given, $P_{I}=$ Atmospheric pressure

$$
=75 \times \mathrm{pg},
$$

$$
\mathrm{V}_{1}=100 \times \mathrm{A}
$$

$$
\mathrm{P}_{2}^{1}=\text { Atmospheric pressure }
$$

$$
=75 \rho g+h \rho g
$$

+Mercury pressure
(if $h=$ height of mercury)

Case 2: Net pressure on air in volume V
$=P_{\text {atm }}+\rho_{H_{g}} \times g \times h$
$\quad P_{1} V_{1}=\mathrm{P}_{2} V_{2}$
$\Rightarrow \quad \rho_{\mathrm{Hg}} \times \mathrm{g} \times 65 \times \mathrm{A} \times 20$

$=\left(\rho_{\mathrm{H}} \times \mathrm{g} \times 75 \times \rho_{\mathrm{H}} \times\right.$
$=\left(\rho_{\mathrm{Hg}} \times \mathrm{g} \times 75+\rho_{\mathrm{Hg}} \times \mathrm{g} \times 10\right) \mathrm{A} \times h$

Applying combined gas equation to part 1 of the tube,

$$
\begin{aligned}
& \frac{(45 A) P_{0}}{300} \\
&=\quad \frac{(45-x) A P_{1}}{273} \\
& \Rightarrow \quad P_{1}=\frac{273 \times 45 \times P_{0}}{300(45-x)}
\end{aligned}
$$

Applying combined gas equation to part 2 of the tube,

$$
\begin{array}{rlrl}
\frac{(45 A) P_{0}}{300} & =\frac{(45+x) \mathrm{AP}_{2}}{400} \\
\Rightarrow \quad P_{2} & =\frac{400 \times 45 \times \mathrm{P}_{0}}{300(45+x)} \\
P_{1} & =P_{2} \\
\Rightarrow \frac{273 \times 45 \times P_{0}}{300(45-x)} & =\frac{400 \times 45 \times \mathrm{P}_{0}}{300(45+x)} \\
\Rightarrow \quad \frac{45 \times 273}{45-x} & =\frac{400 \times 45}{45+x} \\
\Rightarrow \quad(45-x) 400 & =(45+x) 273 \\
\Rightarrow 18000-400 x & =12285+273 x \\
\Rightarrow(400+273) x & =18000-12285 \\
\Rightarrow \quad x & =8.49 \\
\Rightarrow \quad & \quad: \quad P_{1} & =\frac{273 \times 45 \times 76}{300+36.51} \tag{i}\\
\therefore \quad & =85.25 \mathrm{~cm} \text { of } \mathrm{Hg}
\end{array}
$$

24.35

Case 1: Atmospheric pressure + Pressure Case 2: Atmospheric pressure +

Component of the pressure due to mercury column

$$
\begin{aligned}
P_{1} V_{1} & =P_{2} V_{2} \\
\Rightarrow\left(76 \times P_{\mathrm{Hg}} \times \mathrm{g}\right. & \left.+\mathrm{P}_{\mathrm{Hg}} \times \mathrm{g} \times 20\right) \times \mathrm{A} \times 43 \\
& =\left(76 \times \rho_{\mathrm{Hg}} \times \mathrm{g}+\rho_{\mathrm{Hg}} \times \mathrm{g}\right. \\
& \left.\times 20 \times \cos 60^{\circ}\right) \mathrm{A} \times 1 \\
\Rightarrow \quad 96 \times 43 & =86 \times \mathrm{L} \\
\Rightarrow \quad \therefore \quad \mathrm{~L} & =\frac{96 \times 43}{86}=48 \mathrm{~cm}
\end{aligned}
$$

24.36 The middle wall is weakly conducting. Thus after a long time the temperature of both the parts will be equal. The final position of the separating wall be at a distance x from the left end. So it is at a distance ($30-x$) from right end.

Putting combined gas equation of one side of the separating wall

$$
\begin{aligned}
& \frac{P_{1} \times V_{1}}{T_{1}}=\frac{P_{2} \times V_{2}}{T_{2}} \\
\Rightarrow & \frac{P \times 20 A}{400}=\frac{P^{\prime} \times x A}{T}
\end{aligned}
$$

$$
\Rightarrow \frac{P \times 10 \mathrm{~A}}{100}=\frac{P^{\prime} \times(30 \mathrm{~A}-x) \mathrm{A}}{\mathrm{~T}}
$$

using (i) and (ii),

$$
\frac{\mathrm{P} \times 20 \mathrm{~A} \times 100}{400 \times \mathrm{P} \times 10 \mathrm{~A}}=\frac{\mathrm{P}^{\prime} \times x \mathrm{~A}}{\pi \mathrm{P}^{\prime}(30-x) \mathrm{A}}
$$

$$
\Rightarrow \quad \frac{1}{2}=\frac{x}{30-x}
$$

$$
\Rightarrow \quad 30-x=2 x
$$

\Rightarrow

$$
\begin{aligned}
30 & =3 x \\
x & =10 \mathrm{~cm}
\end{aligned}
$$

The separator will be at a distance 10 cm from the left end.
24.37 We have,

$$
\frac{d V}{d t}=r
$$

$\Rightarrow \quad d V=r d t$
Let the pressure pumped out gas $=d p$
Volume of container $=V_{0}$
At a pump $d V$ amount of gas has been pumped out

$$
\begin{array}{ll}
\Rightarrow & \mathrm{PdV}=-\mathrm{V}_{0} d \mathrm{P} \\
\Rightarrow & \mathrm{Prdt}=-\mathrm{V}_{0} d \mathrm{P} \\
\Rightarrow & \frac{d p}{\mathrm{P}}=-\frac{r d t}{\mathrm{~V}_{0}}
\end{array}
$$

On integration, we get

$$
\mathrm{P}=e^{-\frac{r t}{\mathrm{~V}_{0}}}
$$

Half of the gas been pumped out, pressure will be half

$$
\begin{array}{ll}
\text { ie. } & 1=\frac{1}{2} e^{-\frac{r t}{V_{0}}} \\
\Rightarrow & \ln 2=\frac{r t}{V_{0}} \\
\Rightarrow & t=\ln 2 \times \frac{V_{0}}{r}
\end{array}
$$

24.38 Here,

$$
\begin{array}{r}
P=\frac{P_{0}}{1+\left(\frac{V}{V_{0}}\right)^{2}} \\
\Rightarrow \quad \frac{n R T}{V}=\frac{P_{0}}{1+\left(\frac{V}{V_{0}}\right)^{2}}
\end{array}
$$

$[P V=n R T$ according to ideal gas equation]
$\Rightarrow \frac{R T}{V}=\frac{P_{0}}{1+\left(\frac{V}{V_{0}}\right)^{2}}$ Since $_{n}$
$\overline{L 41} \mathrm{Wes}$
$\Rightarrow \quad \frac{\mathrm{RT}}{\mathrm{V}_{0}}=\frac{\mathbf{P}_{\mathbf{0}}}{1+\left(\frac{\mathrm{V}}{\mathrm{V}_{0}}\right)^{2}}$, Lat $\mathrm{V}_{\text {, }}$
$\Rightarrow \quad P_{0} V_{0}=R T(1+1)$
$\Rightarrow \quad P_{0} V_{0}=R T \times 2$

$$
T=\frac{P_{0} V_{0}}{2 R}
$$

24.39 Internal energy $=n R T$

Now,
$\mathrm{PV}=n \mathrm{RT}$ $n \mathrm{~T}=\mathrm{PV}$
here P and V constant $\mathrm{So}, n \mathrm{~T}$ is $\mathrm{con}_{\text {on st }} .42$
$\begin{aligned} \therefore \text { Internal energy } & =\mathrm{R} \times \text { constant } \\ & =\text { constant }\end{aligned}$

$$
=\text { constant }
$$

24.40 Frictional force $=\mu \mathrm{N}$

Let the cork move to a distance $=d l$
\therefore Workdone by frictionalforce $=M$ d Before that the work will not start, means volume remain constant

$$
\begin{aligned}
\Rightarrow & \frac{P_{1}}{T_{1}} & =\frac{P_{2}}{T_{2}} \\
\Rightarrow & \frac{1}{300} & =\frac{P_{2}}{600} \\
\Rightarrow & P_{-2} & =2 \mathrm{~atm}
\end{aligned}
$$

\therefore Extra pressure $=2 \mathrm{~atm}-1 \mathrm{~atm}$

$$
\doteq 1 \mathrm{~atm}
$$

Workdone by 1 atm (A dd)

$$
\mu \mathrm{N} d l=[1 \mathrm{~atm}][\mathrm{Adl}]
$$

$$
\mathrm{N}=\frac{1 \times 10^{5} \times \pi\left(5 \times 10^{-2}\right)^{2}}{0.2}
$$

$$
=\frac{1 \times 10^{5} \times \pi \times 25 \times 10^{-4}}{0.2}
$$

Total circumference of work

$$
\begin{aligned}
& =2 \pi r \frac{d \mathrm{~N}}{d l}=\frac{\mathrm{N}}{2 \pi r} \\
& =\frac{1 \times 10^{5} \times \pi \times 25 \times 10^{-4}}{0.2 \times 2 \pi r} \\
& =\frac{1 \times 10^{5} \times 25 \times 10^{-4}}{0.2 \times 2 \times 5 \times 10^{-2}} \\
& =1.25 \times 10^{4} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

WWW.GRADESETTER.COM

\therefore Tension in wire $=P_{0} A$ 24.42 Where A is area of tube.
nt
$2 \mathrm{P}_{0}=\left(h_{2}+h_{0}\right) \mathrm{pg}$
$[\therefore$ since liquids at same level h ave same pressure]

$$
\begin{array}{rlrl}
\Rightarrow & 2 \mathrm{P}_{0} & =h_{2} \rho g+h_{0} \rho g \\
\Rightarrow & h_{2} \rho g & =2 \mathrm{P}_{0}-h_{0} \rho g \\
\Rightarrow & & h_{2} & =\frac{2 P_{0}}{\rho g}-\frac{h_{0} \rho g}{\rho g} \\
& & & =\frac{2 P_{0}}{\rho g}-h_{0}
\end{array}
$$

(b) K.E. of the water = pressure energy of the water at that layer

$$
\begin{array}{cl}
\Rightarrow & \frac{1}{2} m V^{2}=m \times \frac{P}{\rho} \\
\Rightarrow & V^{2}=\frac{2 P}{\rho}=\frac{2}{\rho}\left[P_{0}+\rho g\left(h_{1}-h_{0}\right)\right] \\
\Rightarrow & V=\left[\frac{2}{\rho}\left\{P_{0}+\rho g\left(h_{1}-h_{0}\right\}\right]^{\frac{1}{2}}\right.
\end{array}
$$

(c) From question,

$$
2 P_{0}+\rho g\left(h_{1}-h_{0}\right)=P_{0}+\rho g X
$$

$$
\Rightarrow \quad X=\frac{P_{0}}{\rho g}+\left(h_{1}-h_{0}\right)=h_{2}+h_{1}
$$

i.e. X is h_{1} meter below the top
$\Rightarrow X$ is $-h_{1}$ above the top
24.43 Given, $A=10 \mathrm{~cm}^{2}=10^{-3} \mathrm{~m}^{2}, \mathrm{~m}=1 \mathrm{~kg}$

$$
p=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}, l=20 \mathrm{~cm}
$$

Case 1 : External pressure exists
Case 2 : Internal pressure dose not exists

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{10^{5}+1 \times 9.8}{10^{-3}} \mathrm{~V}=\frac{1 \times 9.8}{10^{-3}} \times \mathrm{V}_{1} \\
& \Rightarrow\left(10^{5}+9.8 \times 10^{3}\right) \mathrm{A} \times l \\
& \\
& =10^{5} \times 2 \times 10^{-1}+2 \times 9.8 \times 10^{3} \times \mathrm{A} \times l^{\prime} \\
& = \\
& \Rightarrow \quad 9.8 \times 10^{3} l^{\prime} \\
& \Rightarrow \quad l^{\prime} \\
& \Rightarrow \quad \frac{2 \times 10^{4}+19.6 \times 10^{2}}{9.8 \times 10^{3}} \\
& \\
& =2.24081 \mathrm{~m}
\end{aligned}
$$

24.44

$$
\begin{gathered}
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
\Rightarrow \quad\left(\frac{m g}{\mathrm{~A}}+\mathrm{P}_{0}\right) \mathrm{A} l=\mathrm{P}_{0} \mathrm{~A} l^{\prime} \\
\Rightarrow\left(\frac{1 \times 9.8}{10 \times 10^{-4}}+10^{5}\right) 0.2=10^{5} l^{\prime} \\
\Rightarrow\left(9.8 \times 10^{3}+10^{5}\right) \times 0.2=10^{5} l^{\prime} \\
\quad=109.8 \times 10^{3} \times 0.2=10^{5} l^{\prime} \\
\Rightarrow \quad l^{\prime}=\frac{109.8 \times 0.2}{10^{2}} \\
\quad=0.2196 \mathrm{~m}=0.22 \mathrm{~m} \approx 22 \mathrm{~cm}
\end{gathered}
$$

24.45 When the bulbs are maintained at two different temperatures.
The total heat gained by ' B ' is the heat lost by ' A '. Let the final temperature be X
So, $\quad m_{1} \mathrm{SD} t=m_{2} \mathrm{SD} t$
$\Rightarrow n_{1} \mathrm{M} \times \mathrm{S} \times(\mathrm{X}-0)=n_{2} \mathrm{M} \times \mathrm{S} \times(62-\mathrm{X})$
$\Rightarrow \quad n_{1} \mathrm{X}=62 n_{2}-n_{2} \mathrm{X}$
So,

$$
\mathrm{X}=31^{\circ} \mathrm{C}=304 \mathrm{~K}
$$

[Since, Initial temperature $=0^{\circ} \mathrm{C}$
$\mathrm{P}=76 \mathrm{~cm}$ of $\mathrm{Hg}, \mathrm{V}_{1}=\mathrm{V}_{2}$ Hence $\left.n_{1}=n_{2}\right]$ for a single ball

$$
\begin{array}{rlrl}
& \quad \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}} & =\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
\Rightarrow \quad \frac{76 \times V}{273} & =\frac{\mathrm{P}_{2} \times \mathrm{V}}{304} \\
\Rightarrow \quad \mathrm{P}_{2} & =\frac{304 \times 76}{273} \\
& =84.630=84^{\circ} \mathrm{C}
\end{array}
$$

16

Given, Temperature $=20^{\circ} \mathrm{C}$
Relative humidity $=100 \%$
So the air is saturated at $20^{\circ} \mathrm{C}$
Dew point is the temperature at which saturated vapour pressure is equal to present vapour pressure
So, $20^{\circ} \mathrm{C}$ is the dew point.

$$
\begin{aligned}
& T=25^{\circ} \mathrm{C}, \\
& P=104 \mathrm{kPa}
\end{aligned}
$$

$$
R_{H}=\frac{V P}{S V P}
$$

$$
\left[\mathrm{SVP}=3.2 \mathrm{KPa}, \mathrm{R}_{\mathrm{H}}=0.6\right]
$$

$$
V P=0.6 \times 3.2 \times 10^{3}
$$

$$
=1.92 \times 10^{3}=2 \times 10^{3}
$$

When vapour pressure removed VP reduces to zero
Net pressure inside the room now

$$
\begin{aligned}
& =104 \times 10^{3}-2 \times 10^{3} \\
& =102 \times 10^{3}=102 \mathrm{KPa}
\end{aligned}
$$

24.48 Temperature $=20^{\circ} \mathrm{C}$, dew point $=10^{\circ} \mathrm{C}$ The place is saturated at $10^{\circ} \mathrm{C}$ even if the temperature drop dew point remains unaffected
The air has the vapour pressure which is the saturation VP at $10^{\circ} \mathrm{C}$ if saturated vapour pressure does not change on temperature.
24.49

$$
R_{H}=\frac{V P}{S V P}
$$

The point where the vapour start condensing,

$$
\begin{aligned}
V P & =S V P \\
\text { We know } P_{1} V_{1} & =P_{2} V_{2} \\
R_{H} \times S V P \times 10 & =S V P \times V_{2} \\
\Rightarrow \quad V_{2} & =10 R_{H} \\
& =10 \times 0.4 \\
& =4 \mathrm{~cm}^{3}
\end{aligned}
$$

24.50 Atmospheric pressure $=76 \mathrm{~cm}$ of Hg When water is introduced the water vapour exerts some pressure which counter acts at the atmospheric pressure The pressure drops to 75.4 cm Pressure of vapour

$$
\begin{aligned}
& =(76-75.4) \mathrm{cm} \\
& =0.6 \mathrm{~cm}
\end{aligned}
$$

$$
=\frac{V P}{S V P}=\frac{0.6 \mathrm{~cm}}{1 \mathrm{~cm}}=60 \%
$$

24.51

From Fig. 24.6 we draw perpe from Y-axis to me find the temperat Hence we fimately $65^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$.
24.52 The temperature of body is $98^{\circ} \mathrm{F}$ At $37^{\circ} \mathrm{C}$ from than 50 mm B.P. is the temperature when atmosphe ${ }^{\text {phe }}$ blood. Thus minimum, p boiling is 50 mm of Hg .
24.53 Given:

SVF at the dew point $=8.9 \mathrm{~mm}$ SVP at room temperature $=17.5 \mathrm{~mm}$ Dew point $=10^{\circ} \mathrm{C}$ as at this temperat the condensation starts
Room temperature $=20^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{H}} & =\frac{\text { SVP at dew point }}{\text { SVP at room temp. }} \\
& =\frac{8.9}{17.5}=51 \%
\end{aligned}
$$

$24.5450 \mathrm{~cm}^{3}$ of saturated vapour is cooled frop 30° to 20°. The absolute humidity of saturated $\mathrm{H}_{2} \mathrm{O}$ vapour $30 \mathrm{~g} / \mathrm{m}^{3}$. Absolut humidity is the mass of water vapou present in a given volume. At $30^{\circ} \mathrm{C}$ contains $30 \mathrm{~g} / \mathrm{m}^{3}$
at $50 \mathrm{~m}^{3}$ it contains $30 \times 50=1500 \mathrm{~g}$
at $20^{\circ} \mathrm{C}$ it contains $16 \times 50=800 \mathrm{~g}$ water condense $=1500-800=700 \mathrm{gm}$
24.55 Pressure is minimum when the vapou present inside is at saturation vapou pressure. As this is the maximumpressur which the vapours can exert.
Hence the normal level of mercury dropi down by 0.8 cm
\therefore The height of Hg column
(Given SVP at atmospheric temperature $=0.08 \mathrm{~cm}$ of H_{8}
$=76-0.80 \mathrm{~cm}$
$=75.2 \mathrm{~cm}$ of Hg

24.56 Pressure inside the tube
 = Atmospheric pressure
 $=99.4 \mathrm{KPa}$

If num' Then x 96×1
24.57 Let Hei

$$
\begin{aligned}
& \begin{array}{l}
\text { rpendicul } \\
\text { his. } \\
\text { ature to } \\
\text { be }
\end{array} \\
& \begin{array}{l}
{ }^{\prime} \mathrm{F}=37^{\circ} \mathrm{C} \\
=\text { just }{ }^{\mathrm{l}} \mathrm{e}_{\mathrm{s}_{8}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pressure exerted by } \mathrm{O}_{2} \text { vapour } \\
& \text { = Atmospheric pressure-V.P. } \\
& =99.4 \mathrm{KPa}-3.4 \mathrm{KPa} \\
& =96 \mathrm{KPa} \\
& \text { If number of mole of } \mathrm{O}_{2}=n \\
& \text { Then using gas equation } \\
& 96 \times 10^{9} \times 50 \times 10^{-6} \\
& =n \times 8.3 \times 300 \\
& \Rightarrow \quad n=\frac{96 \times 50 \times 10^{3}}{8.3 \times 300} \\
& =1.9277 \times 10^{-3}
\end{aligned}
$$

24.57 Let the barometer has a length $=X$ Height of air above the air mercury column

$$
=(X-74+1)=(X-73)
$$

Pressure of air $=76-74-1=1 \mathrm{~cm}$ for 2 nd case, height of air above

$$
\Rightarrow \quad(X-72.1+1)=(X-71.1)
$$

pressure of air $=(74-72.1-1)=0.90$

$$
\begin{aligned}
(\mathrm{X}-73)(1) & =\frac{9}{10}(\mathrm{X}-71.1) \\
\Rightarrow 10(\mathrm{X}-73) & =9(\mathrm{X}-71.1) \\
\Rightarrow \quad \mathrm{X} & =10 \times 73-9(71.1) \\
& =730-639.9 \\
\mathrm{X} & =90.1 \\
\text { Height of air } & =90.1
\end{aligned}
$$

Height of barometer tube above the mercury column

$$
=90.1+1=91.1 \mathrm{~mm}
$$

24.58 Relative humidity $=40 \%$

$$
\mathrm{SVP}=4.6 \mathrm{~mm} \text { of } \mathrm{Hg}
$$

$$
0.4=\frac{\mathrm{VP}}{4.6}
$$

$$
\Rightarrow \quad V P=0.4 \times 4.6=1.84
$$

$$
\frac{P_{1} V}{T_{1}}=\frac{P_{2} V}{T_{2}}
$$

$$
\Rightarrow \quad \frac{1.84}{273}=\frac{P_{2}}{293}
$$

$$
\Rightarrow \quad P_{2}=\frac{1.84 \times 293}{273}
$$

Relative humidity at $20^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =\frac{V P}{S V P}=\frac{1.83 \times 293}{273 \times 18} \\
& =0.109=10.9 \%
\end{aligned}
$$

24.59

$$
\mathrm{R}_{\mathrm{H}}=\frac{\mathrm{VP}}{\mathrm{SVP}}
$$

Given,

$$
\begin{aligned}
0.50 & =\frac{V P}{3600} \\
V P & =3600 \times 0.50
\end{aligned}
$$

$\Rightarrow \quad$ VP $=3600 \times 0.50$
Let the extra pressure needed be P
So, $\quad \mathrm{P}=\frac{m}{\mathrm{M}} \times \frac{\mathrm{RT}}{\mathrm{V}}$

$$
=\frac{m}{18} \times \frac{8.3 \times 300}{1}
$$

Now, $\frac{m}{\mathrm{M}} \times 8.3 \times 300+3600 \times 0.50$

$$
=3600
$$

[air is saturated i.e. $\mathrm{RH}=100 \%=1$
or VP $=$ SVP]

$$
\begin{aligned}
\Rightarrow \quad m & =\frac{(36-18) 6}{8.3} \\
& =\frac{18 \times 6}{8.3}=13 \mathrm{gm}
\end{aligned}
$$

24.60 Given, $T=300 \mathrm{~K}$,

Relative humi ity $=20 \%$,

$$
\begin{aligned}
\mathrm{V} & =50 \mathrm{~m}^{3} \\
\text { SVP at } 300 \mathrm{~K} & =3.3 \mathrm{KPa} \\
\mathrm{VP} & =\text { Relative humidity } \times \mathrm{SVP} \\
& =\left(0.2 \times 3.3 \times 10^{3}\right)
\end{aligned}
$$

$$
\mathrm{PV}=\frac{m \mathrm{RT}}{\mathrm{M}}
$$

$$
\Rightarrow 0.2 \times 3.3 \times 10^{3} \times 50
$$

$$
=\frac{m \times 8.3 \times 30 \mathrm{C}}{18}
$$

$$
\begin{aligned}
\Rightarrow \quad m & =\frac{0.2 \times 3.3 \times 50 \times 18 \times 10^{3}}{8.3 \times 300} \\
& =238.55 \mathrm{~g} \approx 238 \mathrm{~g}
\end{aligned}
$$

Mass of water present in the room $=238 \mathrm{~g}$
24.61

$$
\begin{aligned}
\mathrm{RH} & =\frac{\mathrm{VP}}{\mathrm{SVP}} \\
\Rightarrow \quad 0.20 & =\frac{\mathrm{VP}}{3.3 \times 10^{3}} \\
\Rightarrow \quad \mathrm{VP} & =0.20 \times 3.3 \times 10^{3} \\
& =660 \\
\Rightarrow \text { Again } \quad \mathrm{PV} & =n \mathrm{RT}
\end{aligned}
$$

Mass of water evaporated $=m$

$$
\begin{aligned}
\Rightarrow 0.96 \times 10^{3} \times 50 & =\frac{m \times 8.3 \times 288}{18} \\
\Rightarrow \quad m & =\frac{0.96 \times 50 \times 18 \times 10}{8.3 \times 288} \\
& =361.45 \approx 361 \mathrm{~g}
\end{aligned}
$$

(b) $\mathrm{At} 20^{\circ} \mathrm{C}, \mathrm{SVP}=2.4 \mathrm{KPa}$, At $15^{\circ} \mathrm{C}, \mathrm{SVP}=1.6 \mathrm{KPa}$
24.62 (a) Relative humidity

$$
=\frac{V P}{S V P \text { at } 15^{\circ} \mathrm{C}}
$$

$$
\Rightarrow \quad 0.4=\frac{V P}{1.6 \times 10^{3}}
$$

$$
\Rightarrow \quad V P=0.4 \times 1.6 \times 10^{s}
$$

The evaporation occurs as long as the atmosphere does not saturated Net pressure change
$=1.6 \times 10^{3}-0.4 \times 1.6 \times 10^{3}$
$=(1.6-0.4 \times 1.6) 10^{3}$
$=0.96 \times 10^{3}$

$$
\begin{aligned}
& =(2.4-1.6) \times 10^{3} \mathrm{~Pa} \\
& =0.8 \times 10^{3} \mathrm{~Pa}
\end{aligned}
$$

Mass of water evaporated

$$
\therefore \quad=m=\frac{m^{\prime} \times 8.3 \times 293}{18}
$$

$$
\Rightarrow \quad \left\lvert\, \quad m^{\prime}=\frac{0.8 . \times 50 \times 18 \times 10^{3}}{8.3 \times 293}\right.
$$

$$
=296.06 \approx 296 \text { grams } .
$$

35.1

$1.45 \approx 361 \mathrm{~g}$
KPa,
KPa
(.6) $\times 10^{3} \mathrm{~Pa}$
$)^{3} \mathrm{~Pa}$
1

$\times 8.3 \times 293$
18

$\frac{18 \times 10^{3}}{293}$
6 grams.
25.1 Given Mass of aluminium $=0.5 \mathrm{~kg}$ Mass of water $=0.2 \mathrm{~kg}$ Mass of jron $=0.2 \mathrm{~kg}$
Temperature of aluminium and water

$$
=20^{\circ}=293^{\circ} \mathrm{K}
$$

Temperature of iron $=100^{\circ} \mathrm{C}=373 \mathrm{k}$.
Specific heat of $\mathrm{Al}=910 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
Heat gain $=0.5 \times 910(\mathrm{~T}-293)+0.2 \times$
$4200 \times(\mathrm{T}-293)$

$$
=(\mathrm{T}-293)
$$

$$
[0.5 \times 910+0.2 \times 4200]
$$

Heat lost $=0.2 \times 470 \times(373-T)$
We know Heat gain $=$ Heat lost.
$\Rightarrow(T-293)[0.5 \times 910+0.2 \times 4200]$

$$
=0.2 \times 470 \times(373-T)
$$

$\Rightarrow(T-293)(455+840)=94(373-T)$
$\Rightarrow(T-293) \frac{1295}{94}=(373-T) \quad\left[\frac{1295}{94} \approx 14\right]$

$$
(T-293) \times 14=373-T
$$

$$
\Rightarrow 14 \mathrm{~T}-293 \times 14=373-\mathrm{T}
$$

$$
\Rightarrow \quad . \quad 15 \mathrm{~T}=373+4102=4475
$$

$$
\Rightarrow \quad \mathrm{T}=\frac{4475}{15}=298 \mathrm{k}
$$

$\therefore \quad \mathrm{T}=(298-273)^{\circ} \mathrm{C}=25^{\circ} \mathrm{C}$
\therefore The final temp. $=25^{\circ} \mathrm{C}$
25.2 Given, Mass of iron $=100 \mathrm{~g}$

Water equivalent of calory meter

$$
=10 \mathrm{~g}
$$

Mass of water $=240 \mathrm{gm}$
Let the temp. of surface $=0^{\circ} \mathrm{C}$

$$
\mathrm{S}_{\text {iron }}=470-\mathrm{J} / \mathrm{kg}
$$

Total heat gained $=$ Total heat lost
So, $\frac{100}{1000} \times 470 \times\left(\theta-60^{\circ}\right)$

$$
\begin{aligned}
& =\frac{(240+10)}{1000} \times 4200 \times(60-20) \\
\Rightarrow & 47 \theta-47 \times 60= \\
\Rightarrow & \quad \theta=\frac{42000+2820}{47} \\
& =\frac{44820}{47}=953.61^{\circ} \mathrm{C}
\end{aligned}
$$

25.3 Given, The temperature of $\mathrm{A}=12^{\circ} \mathrm{C}$, The temperature of $\mathrm{B}=19^{\circ} \mathrm{C}$
The temperature of $\mathrm{C}=28^{\circ} \mathrm{C}$
\Rightarrow The temperature of $\mathrm{A}+\mathrm{B}=16^{\circ} \mathrm{C}$
\Rightarrow The temperature of $\mathrm{B}+\mathrm{C}=23^{\circ} \mathrm{C}$
In accordance with the principle of calorimetry, when A and B are mixed,

$$
\begin{array}{ll}
& \mathrm{M}_{\mathrm{CA}}(16-12)=\mathrm{M}_{\mathrm{CB}}(19-16) \\
\Rightarrow & 4 \mathrm{M}_{\mathrm{CA}}=3 \mathrm{M}_{\mathrm{CB}} \\
\Rightarrow & \\
\Rightarrow & \mathrm{M}_{\mathrm{CA}}=\left(\frac{3}{4}\right) \mathrm{M}_{\mathrm{CB}}
\end{array}
$$

and when B and C are mixed

$$
\begin{aligned}
& & \mathrm{M}_{\mathrm{CB}}(23-19) & =\mathrm{M}_{\mathrm{CC}}(28-23) \\
\Rightarrow & & 4 \mathrm{M}_{\mathrm{CB}} & =5 \mathrm{M}_{\mathrm{CC}} \\
\Rightarrow & & \mathrm{M}_{\mathrm{CC}} & =\left(\frac{4}{5}\right) \mathrm{M}_{\mathrm{CB}}
\end{aligned}
$$

When A and C are mixed, if T is the common temperature of the mixture,

$$
\mathrm{M}_{\mathrm{CA}}(\mathrm{~T}-12)=\mathrm{M}_{\mathrm{CC}}(28-\mathrm{T})
$$

$$
\Rightarrow\left(\frac{3}{4}\right) M_{C B}(T-12)=\left(\frac{4}{5}\right) M_{C B}(28-T)
$$

Here, Volume of ice $=2 \times 2 \times 2=8 \mathrm{~cm}^{3}$ Total mass of ice $=8 \times 0.9 \times 4=28.8 \mathrm{~g}$
\therefore Density of ice $=0.9 \mathrm{gm} / \mathrm{cm}^{9}$

Ice

mass $=28.8 \mathrm{~g}$. temp $=0^{\circ} \mathrm{C}$
Drink
mass $=200 \mathrm{~g} .$, temp. $=10^{\circ} \mathrm{C}$
Heat required for melting

$$
=28.8 \times 80=2304 \mathrm{cal} .
$$

Heat released to drop to $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =200 \times 10 \times 1 \\
& =2000 \mathrm{cal} .
\end{aligned}
$$

Hence 2000 cal. released by drink must Have been utilised for melting of ice.

So, amount of ice melted $=\frac{2000}{80}=25 \mathrm{gm}$. Since the total ice is not melted, hence the temp. of the system remains at $0^{\circ} \mathrm{C}$.
25.5 Energy required to decreases the temp. of 10 kg . of water to $5^{\circ} \mathrm{C}$.

$$
\begin{aligned}
U & =10 \times 4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C} \times 5^{\circ} \mathrm{C} \\
& =210,000=21 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

Energy required for evaporation of water to 0.2 g . $/ \mathrm{sec}$

$$
\begin{aligned}
& =2 \times 10^{-4} \times 2.27 \times 10^{6} \\
& =454
\end{aligned}
$$

454 J energy losing system per second

$$
=\frac{21 \times 10^{4}}{454}
$$

${ }_{\text {minute }}^{21 \times 10^{4} \text { Jenergy losing system during one }}$

$$
=\frac{21 \times 10^{4}}{454 \times 60} .=7.7 \text { minute }
$$

$\therefore 5^{\circ} \mathrm{C}$ is 7.7 minute
25.6 Let the volume of cube $=\mathrm{V}$

So, volume of ice displaced $=\mathrm{V}$

$$
\Rightarrow \quad\left(\frac{3}{4}\right)(T-12)=\left(\frac{4}{5}\right)(28-T)
$$

Let the initial temp. be $\mathrm{T}^{\circ} \mathrm{K}$,

$$
\Rightarrow(3 \times 5)(T-12)=(4 \times 4)(28-T)
$$

Mass of cube $=8000 \mathrm{~V} / \mathrm{kg}$.

$$
\Rightarrow \quad 15 T-180=448-16 T
$$

We know, heat gained $=$ heat lost

$$
\Rightarrow \quad 31 T=628
$$

$\Rightarrow 8000 \mathrm{~V} \times 470 \times(\mathrm{T}-273)$

$$
\Rightarrow \quad T=\frac{628}{31}=20.258^{\circ} \mathrm{C}
$$

$\Rightarrow 376 \mathrm{~T}-376 \times 273=30420$

$$
=20.3^{\circ} \mathrm{C}
$$

$$
T=\frac{30420+102648}{376}
$$

\Rightarrow

$$
\begin{aligned}
& =\frac{133068}{376} \\
& =353.9042^{\circ} \mathrm{K} \\
& \approx 80^{\circ} \mathrm{C}
\end{aligned}
$$

25.7 Heat absorbed by the ice to raise the temperature $100^{\circ} \mathrm{C}$

$$
\begin{aligned}
Q_{1} & =1 \times 3.36 \times 10^{5}+1 \times 4200 \times 100 \\
& =3.36 \times 10^{5}+4.2 \times 10^{5} \\
& =(3.36+4.2) \times 10^{5} \\
& =7.56 \times 10^{5}=0.756 \times 10^{6}
\end{aligned}
$$

Q_{2} heat released by steam

$$
\begin{aligned}
& =1 \times 2.26 \times 10^{6} \mathrm{~J} \\
& =2.26 \times 10^{6} \mathrm{~J}
\end{aligned}
$$

The extra heat $=Q_{2}-Q_{1}$

$$
\begin{aligned}
& =(2.26-0.756) \times 10^{6} \\
& =1.506 \times 10^{6}
\end{aligned}
$$

\therefore The amount of steam condensed

$$
\begin{aligned}
& =\frac{1.506 \times 10^{6}}{2.26 \times 10^{6}} \\
& =0.665 \mathrm{~kg}=665 \mathrm{gm}
\end{aligned}
$$

The extra ice $=(1000-665)=335 \mathrm{gm}$
\therefore The amount of ice formed

$$
=1000+335=1335 \mathrm{~g} .
$$

25.8 Total heat required to raise the temperature of 20 kg . of water from $10^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \quad \begin{array}{l}
=20 \times 4200 \times 25 \\
\\
=20 \times 4200 \times 25=21 \times 10^{5} \mathrm{~J} \\
\text { Energy utilized }=t \times(0.80) \times 1000
\end{array} .
\end{aligned}
$$ Equating now, we get

$$
t=\frac{21 \times 10^{5}}{800}=44 \mathrm{~min}
$$

Speed V $=54 \mathrm{~km} / \mathrm{h}$
25.13 Mass of van $=1500 \mathrm{~kg}$
25.9 Here $m=0.5 \mathrm{~m}^{2}=500 \mathrm{~L}=500 \mathrm{~kg}$ So the heat liberated during the water changes $20^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =500 \times 4200 \times 15 \\
& \quad[\Delta \theta=20-5=15] \\
& =500 \times 4200 \times 15 \\
& =75 \times 420 \times 1000 \\
& =31500 \times 1000
\end{aligned}
$$

Let the height $=h$
the required work

$$
\begin{aligned}
& =m g h=10 \times 10 \times h=100 \mathrm{~h} \\
\text { But, } & 100 \mathrm{~h}
\end{aligned}=31500000 .
$$

25.10 Since the bullet enters and stops inside the block, the total K.E. change by the bullet is responsible for the internal changes of the block.
\therefore Change in internal energy

$$
\begin{aligned}
& =\text { K.E. of bullet } \\
& =\frac{1}{2} \times \frac{20}{1000} \times 40 \times 40=16 \mathrm{~J}
\end{aligned}
$$

25.11 K.E. of the man $=\frac{1}{2} m \mathrm{~V}^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2}\right) 50 \times 5^{2} \\
& =25 \times 25=625 \mathrm{~J}
\end{aligned}
$$

The amount of heat required to raise the temperature of water from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =m s \Delta \theta=m \times 4200 \times(30-20) \\
& =42000 \mathrm{~m}
\end{aligned}
$$

But, $\quad 42 \times 10^{3} \mathrm{~m}=625$

$$
\begin{aligned}
\Rightarrow \quad m & =\frac{625}{42} \times 10^{-3} \\
& =14.88 \times 10^{-3} \mathrm{~kg} \\
& =15 \mathrm{~g}
\end{aligned}
$$

25.12

Total P.E. $=4 \times 10 \times 3=120 \mathrm{~J}$
Energy utilized $=120 \times \frac{80}{100}=96 \mathrm{~J}$

$$
\begin{aligned}
& =\frac{96}{4.2}=22.857 \mathrm{cal} \\
& \approx 23 \mathrm{cal}
\end{aligned}
$$

25.15

$$
\begin{aligned}
& m_{1}=10 \mathrm{~kg}, \mathrm{~V}_{1}=10 \mathrm{~m} / \mathrm{s} \\
& m_{2}=20 \mathrm{~kg}, \mathrm{~V}_{2}=20 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Here, $m_{2} \mathrm{~V}_{2}-m_{1} \mathrm{~V}_{1}=\left(m_{1}+m_{2}\right) \mathrm{V}$
$\Rightarrow 20 \times 20-10 \times 10=(10+20) \mathrm{V}$
$\Rightarrow \quad 400-100=30 \mathrm{~V}$
$\Rightarrow \quad 300=30 \mathrm{~V}$
$\Rightarrow \quad \mathrm{V}=10 \mathrm{~m} / \mathrm{s}$
Initial kinetic eaergy

$$
\begin{aligned}
& =\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2} \\
& =\frac{1}{2} \times 10 \times(10)^{2}+\frac{1}{2} \times 20 \times(20)^{2} \\
& =500+4000=4500
\end{aligned}
$$

Final kinetic energy $=\frac{1}{2}\left(m_{1}+m_{2}\right) \mathrm{V}^{2}$

$$
\begin{aligned}
& =\frac{1}{2}(10+20)(10)^{2} \\
& =\left(\frac{30}{2}\right) \times 100=1500
\end{aligned}
$$

22
Solutions of Concepts of Physics
\therefore The total change in K.E. $1500=3000 \mathrm{~J}$ $=4500-1500=3000 \mathrm{~J}$
\therefore The thermal energy developed in the process $=3000 \mathrm{~J}$
25.16 Let the mass of ball be $m \mathrm{~kg}$. and

$$
\begin{aligned}
& V_{1}=\sqrt{2 g h}=\sqrt{40} \\
& V_{2}=\sqrt{2 g h}=\sqrt{30}
\end{aligned}
$$

So change in K.E.
$=\frac{1}{2} \times m \times 40-\left(\frac{1}{2} m\right) \times 30=\left(\frac{10}{2}\right) m$ $=5 \mathrm{~m}$
This is utilised to increase in temperature of the ball
From question,

$$
\left(\frac{40}{100}\right) \times \frac{10}{2} m=m \times 800 \times \Delta t
$$

$\Rightarrow \quad \Delta t=\frac{1}{400}=0.0025$

$$
=2.5 \times 10^{-3 \circ} \mathrm{C}
$$

25.17

$$
\begin{aligned}
& m=200 \mathrm{~g}=0.2 \mathrm{~kg} \\
& l=60 \mathrm{~cm}=0.6 \mathrm{~m}, \mathrm{f}=\mathrm{mg}
\end{aligned}
$$

Work done by an energy down by the copper block to a distance 60 cm

$$
\begin{aligned}
W & =m g l \sin \theta \\
& =0.2 \times 10 \times 0.6 \sin 37^{\circ} \epsilon \\
& =1.2 \times\left(\frac{3}{5}\right)=0.72
\end{aligned}
$$

The thermal energy gained by block

$$
\begin{aligned}
& =m s \Delta \theta \\
& =0.2 \times 420 \Delta \theta=84 \Delta \theta
\end{aligned}
$$

But, $84 \Delta \theta=0.72$
26.1

$$
\begin{aligned}
t_{1} & =15^{\circ} \mathrm{C}, t_{2}=17^{\circ} \mathrm{C}, \\
\Delta t & =t_{2}-t_{1} \\
& =17^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}=2^{\circ} \mathrm{C}=275 \mathrm{~K} \\
m_{v} & =100 \mathrm{~g}=0.1 \mathrm{~kg}, \\
m_{w} & =200 \mathrm{~g}=0.2 \mathrm{~kg}
\end{aligned}
$$

Sp. heat capacity of

$$
c_{u}=420 \mathrm{~J} / \mathrm{kg}-\mathrm{K}
$$

Sp . heat capacity of water

$$
=4200 \mathrm{~J} / \mathrm{kg}-\mathrm{K}
$$

(a) The heat transfered to the liquid vessel system is 0 . The internal heat is shared in between the vessel and water.
(b) Work done on the system
$=$ Heat product unit
$\Rightarrow \quad d w=100 \times 10^{-8} \times 420 \times 2+200$ $\times 10^{-3} \times 4200 \times 2$
$=84+84 \times 20=84 \times 21$

$$
=1764 \mathrm{~J}
$$

(c) $\quad d \mathrm{Q}=0, d \mathrm{U}=-d w=1764$
since $d w=-$ ve work done in the system
26.2 (a) Heat is not given to the liquid Instead, the mechanical workdone is converted to heat.
So, heat given to liquid is zero
(b) Work done on the iqquid is the $P E$ lost by the 12 kg mass $=m g h$

$$
\begin{aligned}
& =12 \times 10 \times 0.70 \\
& =84 \mathrm{~J}
\end{aligned}
$$

(c) Let rise in temperature be Δt

We know, $84=m s \Delta t$
$\Rightarrow 84=1 \times 4200 \times \Delta t\left(\right.$ for $\left.^{\prime} m^{\prime}=1 \mathrm{~kg}\right)$
$\Rightarrow \Delta t=\frac{84}{4200}=\frac{1}{50}=0.02 \mathrm{~K}$

26.3 Mass of block $=100 \mathrm{~kg}$., $u=2 \mathrm{~m} / \mathrm{s}$

$$
\mu=0.2, v=0
$$

We know

$$
d \mathrm{Q}=d u+d w
$$

In this case

$$
d \mathbf{Q}=0
$$

$$
\Rightarrow \quad-d u=d w
$$

$$
\Rightarrow \quad d u=-\left(\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}\right)
$$

$$
=-\frac{1}{2} \times 100 \times 2 \times 2
$$

$$
=200 \mathrm{~J}
$$

26.4 Here,

$$
\mathrm{Q}=100 \mathrm{~J}
$$

We know, $\Delta U=\Delta \mathrm{Q}-\Delta \mathrm{W}$
Here, since the container is rigid,

$$
\Delta \mathrm{V}=0
$$

Hence the $\Delta \mathrm{W}=\mathrm{P} \Delta \mathrm{V}=0$
Só,
$\Delta \mathrm{U}=\Delta \mathrm{Q}=100 \mathrm{~J}$.

$$
\begin{aligned}
& \begin{array}{l}
24 \\
26.5 \\
\text { Solutions of Concepts of Physics } \\
\text { Now in } a b c
\end{array} \\
& \begin{aligned}
P_{1} & =10 \mathrm{kPa} \\
& =10 \times 10^{3} \mathrm{~Pa} \\
P_{2} & =50 \times 10^{3} \mathrm{~Pa}
\end{aligned} \\
& V_{1}=200 \mathrm{CC}, V_{2}=50 \mathrm{CC} \\
& \text { (i) work done on the gas } \\
& =\left[\left(\frac{1}{2}\right)(10+50) \times 10^{3} \times(50-200) \times 10^{-6}\right] \\
& =-4.5 \mathrm{~J} \\
& \begin{array}{ll}
\text { (ii) } & \Delta Q=0 \text {, } \\
\text { So, } & \Delta U=-\Delta
\end{array} \\
& \begin{array}{l}
\text { So, } \Delta U \\
\text { Initial state ' } i \text { ' }
\end{array} \\
& \text { Given: } \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \\
& \text { Final state ' } f \text { ', } \\
& \text { where, } \quad P_{1}=\text { Initial pressure, } \\
& P_{2}=\text { Final pressure } \\
& T_{1}, T_{2}=\text { Absolute temperatures } \\
& \Delta V=0 \\
& \text { So, } \\
& \text { Work done by gás }=P \Delta V=0 \\
& \begin{array}{ll}
& \Delta \mathrm{W}=10 \mathrm{~J} \\
& \Delta \mathrm{Q}=10 \mathrm{~J}+50 \mathrm{~J}=60 \mathrm{~J} \\
\text { So, } & \quad \therefore \Delta \mathrm{U}=50 \mathrm{~J}
\end{array} \\
& \text { 26.9 In path } \mathrm{ACB} \text {, } \\
& \Delta Q=50 \mathrm{cal} .=(50 \times 4.2) \mathrm{J} \\
& =210 \mathrm{~J} \\
& \Delta \mathrm{~W}=\mathrm{W}_{\mathrm{AC}}+\mathrm{W}_{\mathrm{CB}} \\
& =50 \times 10^{-3} \times 200 \times 10^{-6} \\
& =10 \mathrm{~J} \\
& \Delta Q=\Delta U+\Delta W \\
& \Rightarrow \quad \Delta \mathrm{U}=\Delta \mathrm{Q}-\Delta \mathrm{W}=(210-10) \mathrm{J} \\
& =200 \mathrm{~J}
\end{aligned}
$$

26.7 In path ACB,
$W_{A C}+W_{B C}=0+P \Delta V$

$$
\begin{aligned}
& =30 \times 10^{3} \times(25-10) \times 10^{-6} \\
& =0.45 \mathrm{~J}
\end{aligned}
$$

In path $A B$,

$$
\begin{aligned}
W_{A B} & =\frac{1}{2} \times(10+30) \times 10^{3} \times 15 \times 10^{-6} \\
& =\frac{1}{2} \times 40 \times 15 \times 10^{-3}=0.30 \mathrm{~J}
\end{aligned}
$$

In path $A D B$,

$$
\begin{aligned}
W & =W_{A D}+W_{D B} \\
& =10 \times 10^{3}(25-10) \times 10^{-6}+0 \\
& =10 \times 15 \times 10^{-3}=0.15 \mathrm{~J}
\end{aligned}
$$

$$
\operatorname{In} a b c
$$

$$
\begin{aligned}
\Delta Q & =\Delta U+\Delta W \\
\Delta Q & =80 \mathrm{~J}, \Delta W=30 \mathrm{~J} \\
\Delta U & =(80-30) \mathrm{J}=50 \mathrm{~J}
\end{aligned}
$$

Inpath $\mathrm{ADB}, \triangle \mathrm{Q}=$?

$$
\Delta \mathrm{U}=200 \mathrm{~J}
$$

(Internal energy change between two points is always same)

$$
\begin{aligned}
\Delta \mathrm{W} & =\mathrm{W}_{\mathrm{AD}}+\mathrm{W}_{\mathrm{DB}}=\Delta \mathrm{W} \\
& =0+155 \times 10^{3} \times 200 \times 10^{-6} \\
& =31 \mathrm{~J} \\
\Delta \mathrm{Q} & =\Delta \mathrm{U}+\Delta \mathrm{W} \\
& =(200+31) \mathrm{J}=231 \mathrm{~J} \\
& =55 \mathrm{cal} .
\end{aligned}
$$

$\begin{aligned} \text { Heat absorbed } & =\text { area of the griven case } \\ & =\pi \times 10^{4} \times 10^{-6} \times 10^{3} \mathrm{~J}\end{aligned}$

$$
\begin{aligned}
& =\pi \times 10^{4} \times 10^{-6} \times 10^{0} \\
& =3.14 \times 10=31.4 \mathrm{~J}
\end{aligned}
$$

| Solutions of Concepts of Physics |
| :--- | :--- |

From the graph, we find that area under $A C$ is greater than area under AB. So, We see that heat is extracted from the system (b) Amount of heat = area under ABC

$$
=\frac{1}{2} \times \frac{5}{10} \times 10^{5}=25000 \mathrm{~J}
$$

26.17

$$
n=2 \text { mole }
$$

$$
\Delta Q=-1200 \mathrm{~J}
$$

$$
\Delta U=0 \quad \text { (During cyclic process) }
$$

26.21 (a) Since the wall cannot be moved
thus,

$$
\begin{aligned}
\Delta \mathrm{U} & =0 \\
\Delta \mathrm{Q} & =0 \\
\Delta \mathrm{~W} & =0
\end{aligned}
$$

(b) Let final pressure in LHS $=\mathrm{P}_{1}$ that in RHS $=\mathrm{P}_{2}$
Since No. of moles remains constant.

$$
\begin{aligned}
& \text { So } \frac{P_{1} V}{2 R T_{1}}=\frac{P_{2} V}{2 R T} \\
& \Rightarrow \quad P_{1}=\frac{P_{1} T}{T_{1}} \\
& =\frac{P_{1} T_{1} T_{2}\left(P_{1}+P_{2}\right)}{T_{1} \cdot \lambda} \\
& =\frac{P_{1} T_{2}\left(P_{1}+P_{2}\right)}{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let internal energy }=\Delta V \\
& \begin{aligned}
\Delta Q & =\Delta U+\Delta W \\
\Rightarrow \quad m s \Delta \theta & =\Delta U+\mathbf{P}\left(\mathrm{V}_{0}-\mathrm{V}_{4}\right)
\end{aligned} \\
& \Rightarrow 2 \times 4200 \times 4=\Delta \mathrm{U}+10^{5}\left(\mathrm{~V}_{0}-\mathrm{V}_{4}\right) \\
& \Rightarrow 33600=\Delta \mathrm{U}+10^{5}\left(\frac{m}{\rho_{0}}-\frac{m}{\rho_{4}}\right) \\
& =\Delta U+10^{5} \times 0.0000002 \\
& \Rightarrow \quad 33600=\Delta U+0.02 \\
& \Delta U=(33600-0.02) \mathrm{J} \\
& 26.20 \text { Mass }=10 \mathrm{~g}=0.01 \mathrm{~kg} \text {. } \\
& P=10^{5} \mathrm{kPa} \\
& \Delta Q=\mathrm{QH}_{2} \mathrm{O} 0^{\circ}-100^{\circ}+\mathrm{QH}_{2} \mathrm{O} \text { - stea } \\
& =0.01 \times 4200 \times 100 \\
& +0.01 \times 2.5 \times 100 \\
& =4200+25000=29200 \\
& \Delta \mathrm{~W}=\mathrm{P} \Delta \mathrm{~V} \\
& \Delta \mathrm{~V}=\left(\frac{0.01}{0.6}\right)-\left(\frac{0.01}{1000}\right)=0.01699 \\
& \Delta \mathrm{~W}=\mathrm{P} \Delta \mathrm{~V}=0.01699 \times 10^{5}=1699 \mathrm{~J} \\
& \Delta \mathrm{Q}=\Delta \mathrm{W}+\Delta \mathrm{U} \\
& \text { or } \Delta U=\Delta Q-\Delta W=29200-1699 \\
& =27501=2.75 \times 10^{4} \mathrm{~J} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { ook } \\
& \text { Cllllllll}
\end{aligned}
$$

Similarly $\quad P_{2}=\frac{P_{2} T_{1}\left(P_{1}+P_{2}\right)}{\lambda}$
(c) Let $\mathrm{T}_{2}>\mathrm{T}_{1}$ and ' T ' be the common temperature
Initially $\frac{P_{1} V}{2}=n_{1} R T_{1}$
$\Rightarrow \quad n_{1}=\frac{P_{1} \mathrm{~V}}{2 \mathrm{RT}_{1}}$
Hence $\quad \Delta Q=0, \Delta W=0$
Hence $\quad \Delta U=0$
In case LHS,

$$
\Delta \mathrm{U}_{1}=1.5 n_{1} \mathrm{R}\left(\mathrm{~T}-\mathrm{T}_{1}\right)
$$

In case RHS

$$
=\Delta \mathrm{U}_{2}=1.5 n_{2} \mathrm{R}\left(\mathrm{~T}_{2}-\mathrm{T}\right)
$$

But $\quad \Delta \mathrm{U}_{1}-\Delta \mathrm{U}_{2}=0$
$\Rightarrow 1.5 n_{1} \mathrm{R}\left(\mathrm{T}-\mathrm{T}_{1}\right)=1.5 n_{2} \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}\right)$
$\Rightarrow \quad n_{1} \mathrm{~T}-n_{1} \mathrm{~T}_{1}=n_{2} \mathrm{~T}_{2}-n_{2} \mathrm{~T}$
$\Rightarrow \quad \mathrm{T}\left(n_{1}+n_{2}\right)=n_{1} \mathrm{~T}_{1}+n_{2} \mathrm{~T}_{2}$
$\Rightarrow \quad \mathrm{T}=\frac{n_{1} \mathrm{~T}_{1}+n_{2} \mathrm{~T}_{2}}{n_{1}+n_{2}}$
$=\frac{\frac{P_{1} V \times T_{1}}{2 R T_{1}}+\frac{P_{2} V \times T_{2}}{2 R T_{2}}}{\frac{P_{1} V}{2 R T_{1}}+\frac{P_{2} V}{2 R T_{1}}}$
$=\frac{\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \mathrm{T}_{1} \mathrm{~T}_{2}}{\lambda}$
as, $\mathrm{P}_{1} \mathrm{~T}_{2}+\mathrm{P}_{2} \mathrm{~T}_{1}=\lambda$
(d) For RHS

$$
\begin{aligned}
\Delta Q & =\Delta U=(\text { as } \Delta W=0) \\
& =1.5 n_{2} R\left(T_{2}-T\right) \\
& =\frac{1.5 P_{2} V}{2 R T_{2}} R\left[T_{2}-\frac{\left(P_{1}+P_{2}\right) T_{1} T_{2}}{P_{1} T_{2}+P_{2} T_{1}}\right] \\
& =\frac{1.5 P_{2} V}{2 T_{2}} \times \frac{P_{1} T_{2}^{2}-P_{1} T_{1} T_{2}}{\lambda} \\
& =\frac{1.5 P_{2} V}{2 T_{2}} \times \frac{T_{2} P_{1}\left(T_{2}-T_{1}\right)}{\lambda} \\
& =\frac{3 P_{2} P_{1} V\left(T_{2}-T_{1}\right)}{4 \lambda}
\end{aligned}
$$

26.22 (a) As the conducting wall is fixed the work done by the gas on the left part during the process is zero.
(b) For left side,

Let pressure $=\mathbf{P}$
Volume $=\mathrm{V}$
No. of moles $=n(1$ mole $)$
Let initial temperature $=T_{1}$
$\frac{\mathrm{PV}}{2 .}=n \mathrm{RT}_{1}$
$\Rightarrow \quad \frac{\mathrm{PV}}{2}=(1) \mathrm{RT}$
$\Rightarrow \quad T_{1}=\frac{\mathrm{PV}}{(2 \text { moles }) \mathrm{R}}$
For Rightside
No. of moles $=n$ (2 moles).
Let initial temperature $=\mathrm{T}_{2}$
$\frac{\mathrm{PV}}{2}=n \mathrm{RT}_{2}$
$\Rightarrow \quad \mathrm{T}_{2}=\frac{\mathrm{PV}}{(4 \text { moles }) \mathrm{R}}$
(c) Let final temperature $=t$

Final pressure $=\mathbf{P}$
No. of moles $=1 \mathrm{~mole}+2$ moles
$=3$ moles.
$\mathrm{PV}=n \mathrm{RT}$
$\Rightarrow \quad \mathrm{T}=\frac{\mathrm{PV}}{n \mathrm{R}}$

$$
=\frac{\mathrm{PV}}{(3 \text { moles }) \times \mathrm{R}}
$$

(d) For RHS,

$$
\begin{aligned}
\Delta \mathrm{Q} & =\Delta \mathrm{U} \text { as } \Delta \mathrm{W}=0 \\
\Delta \mathrm{U} & =1.5 n_{2} \mathrm{R}\left(\mathrm{~T}-\mathrm{T}_{2}\right) \\
& =1.5 \times 2 \times \mathrm{R}\left(\mathrm{~T}-\mathrm{T}_{2}\right) \\
& =1.5 \times 2 \times \frac{4 \mathrm{PV}-3 \mathrm{PV}}{4 \times 3 \mathrm{~mole}} \\
& =\frac{3 \times \mathrm{PV}}{4 \times 3 \text { mole }}=\frac{\mathrm{PV}}{4}
\end{aligned}
$$

(e) As $d Q=-d U$

$$
\Rightarrow d \mathrm{U}=-d \mathrm{Q}=\frac{-\mathrm{PV}}{4}
$$

EXERCISES

$$
N=1 \text { mole }
$$

$W=20 \mathrm{~g} / \mathrm{mole}, \quad V=50 \mathrm{~m} / \mathrm{s}$
K.E. of the vessel = internal energy of the gas
$K E .=\frac{1}{2} m V^{2}$
$=\frac{1}{2} \times 20 \times 10^{-3} \times 50 \times 50$

$$
=25 \mathrm{~J} .
$$

$$
\text { So, } \quad 25=\frac{3}{2} n R(\Delta T)
$$

$$
\Rightarrow \quad 25=1 \times \frac{3}{2} \times 8.31 \times \Delta T
$$

$$
\Rightarrow \quad \Delta T=\frac{50}{(3 \times 8.3)}=2 \mathrm{~K}
$$

27.2

$$
\begin{aligned}
m & =5 \mathrm{~g}, \\
\Delta \mathrm{~T} & =25-15^{\circ} \mathrm{C}=10^{\circ} \mathrm{C} \\
\mathrm{C}_{v} & =0.172 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C}, \\
J & =4.2 \mathrm{~J} / \mathrm{cal} .
\end{aligned}
$$

We know,
Now,

$$
d Q=d U+d W
$$

So, $\quad d W=0$
So, $\quad d Q=d U$

$$
\begin{aligned}
Q & =m s d T=5 \times 0.172 \times 10 \\
& =8.6 \mathrm{cal}=8.6 \times 4.2 \mathrm{~J} \\
& =36.12 \mathrm{~J} .
\end{aligned}
$$

$27.3 \gamma=1.4$, Weight of piston $(w)=50 \mathrm{~kg}$,
Area of cross section of piston (A)

$$
=100 \mathrm{~cm}^{2}
$$

Atmospheric pressure $\left(\mathrm{P}_{0}\right)=100 \mathrm{kPa}$,

$$
\begin{aligned}
g & =10 \mathrm{~m} / \mathrm{s}^{2}, \quad x=20 \mathrm{~cm}, \\
d \mathrm{~W} & =\mathrm{P} d v=\left(\frac{m g}{\mathrm{~A}}+\mathrm{P}_{0}\right) \cdot \mathrm{Adx} \\
& =\left(\frac{50 \times 10}{100 \times 10^{-4}}+10^{5}\right) \\
& \left(100 \times 10^{-4} \times 20 \times 10^{-2}\right) \\
& =\left(5 \times 10^{4}+10^{5}\right) \times 20 \times 10^{-4} \\
& =1.5 \times 10^{5} \times 20 \times 10^{-4} \\
& =300 \mathrm{~J} .
\end{aligned}
$$

Hence $n R d T=300$

$$
\begin{aligned}
\Rightarrow \quad d \mathrm{~T} & =\frac{300}{n \mathrm{R}} \\
\text { So, } \quad d \mathrm{Q} & =n \mathrm{C} p d \mathrm{~T}=n c_{p} \times\left(\frac{300}{n \mathrm{R}}\right) \\
& =\frac{n \gamma \mathrm{R} 300}{(\gamma-1) n \mathrm{R}} \\
& =\left(\frac{300 \times 1.4}{0.4}\right)=1050 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}_{v}\left(\mathrm{H}_{2}\right) & =2.4 \mathrm{cal} . / \mathrm{g}{ }^{\circ} \mathrm{C} \\
\mathrm{C}_{p}\left(\mathrm{H}_{2}\right) & =3.4 \mathrm{cal} . / \mathrm{g}{ }^{\circ} \mathrm{C} \\
\mathrm{M} & =2 \mathrm{~g} / \mathrm{Mol} \\
\mathrm{R} & =8.3 \times 10^{7} \mathrm{erg} / \mathrm{mol} .{ }^{\circ} \mathrm{C}
\end{aligned}
$$

We know, $\mathrm{C}_{p}-\mathrm{C}_{v}=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
So, difference of molar specific heat,
$\Rightarrow \mathrm{C}_{p} \times \mathrm{M}-\mathrm{C}_{v} \times \mathrm{M}=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
Now,

$$
2 \times \mathrm{J}=\mathrm{R}
$$

$$
\begin{aligned}
\Rightarrow & 2 \times \mathrm{J}=8.3 \times 10^{7} \mathrm{erg} / \mathrm{mol} . .^{\circ} \mathrm{C} \\
\Rightarrow & \mathrm{~J}=415
\end{aligned}
$$

$$
\mathrm{J}=4.15 \times 10^{7} \mathrm{erg} / \mathrm{cal}
$$

27.11 Considering two gases, in gas (1) we have,
$C_{p_{1}}$ (Sp. heat at constant P), $C v_{1}$ (Sp. heat at constant V), n_{1} (No. of moles)

$$
\frac{C p_{1}}{C p_{1}}=\gamma \text { and } C p_{1}-C v_{1}=R
$$

$\Rightarrow \quad C v_{1}=\frac{R}{(\gamma-1)}$ and $C_{p_{1}}=\gamma \frac{R}{(\gamma-1)}$
In gas (2), we have
27.12

Hence $\mathrm{C} p / \mathrm{C} v$ in the mixture $=\gamma$.
When gases are mixed,
$n \mathrm{Cv}_{1} d \mathrm{~T}+2 n \mathrm{Cv}_{2} d \mathrm{~T}=3 n \mathrm{C} v d \mathrm{~T}$

$$
\begin{aligned}
C v & =\frac{C v_{1}+2 C v_{2}}{3} \\
& =\frac{\frac{R}{(\gamma-1)}+\frac{2 \mathrm{R}}{(\gamma-1)}}{3} \\
& =\frac{3 \mathrm{R}}{(\gamma-1) 3}=\frac{\mathrm{R}}{\gamma-1}
\end{aligned}
$$

$$
\left[n_{1}+n_{2}\right] \mathrm{C} v d \mathrm{~T}=n_{1} \mathrm{C}^{\prime} v d \mathrm{~T}+n_{2} \mathrm{C}^{\prime \prime} v d \mathrm{~T}
$$

$$
\Rightarrow \quad \mathrm{C} v=\frac{n_{1} \mathrm{C}_{v}^{\prime}+n_{2} \mathrm{C}^{\prime \prime}{ }_{v}}{n_{1}+n_{2}}
$$

$$
=\frac{1.5 \mathrm{R}+2.5 \mathrm{R}}{2}=2 \mathrm{R}
$$

$$
\gamma=\frac{\mathrm{C} p}{\mathrm{C} v}=\frac{3 \mathrm{R}}{2 \mathrm{R}}=1.5
$$

27.13

$$
\begin{aligned}
C p^{\prime} & =2.5 \mathrm{R}, \mathrm{C} p^{\prime \prime}=3.5 \mathrm{R} \\
\mathrm{C} v^{\prime} & =1.5 \mathrm{R} \mathrm{C} v^{\prime \prime}=2.5 \mathrm{R} \\
n_{1} & =n_{2}=1 \mathrm{~mol} .,
\end{aligned}
$$

$$
\mathrm{C} p=\mathrm{C} v+\mathrm{R}=2 \mathrm{R}+\mathrm{R}=3 \mathrm{R}
$$

$$
\Rightarrow \gamma C v_{1}-C v_{1}=R
$$

$$
\Rightarrow \quad C v_{1}(\gamma-1)=R
$$

$$
n=\frac{1}{2} \mathrm{~mol}
$$

$\frac{i}{1)}$ and

$\frac{\mathrm{R}}{\text { 1) }}$

: 2
t and $d U_{2}$ ${ }^{d} T T$ $t T$

Similarly, temperature at $b=240 \mathrm{~K}$, at c it is 480 K and at d it is 240 K .
(b) For $a b$ process

$$
d \mathrm{Q}=n c_{p} d \mathrm{~T}
$$

[Since $a b$ is isometric]

$$
=\frac{1}{2} \times \frac{\mathrm{R} \gamma}{\gamma-1}(\mathrm{~T} b-\mathrm{T} a)
$$

$$
=\frac{1}{2} \times \frac{\frac{25 \times 5}{3 \times 3}}{\frac{5}{3}-1} \times(240-120)
$$

$$
=\frac{1}{2} \times \frac{125}{9} \times \frac{3}{2} \times(120)
$$

$$
=1250 \mathrm{~J}
$$

For $b c, d \mathrm{Q}=d \mathrm{U}+d \mathrm{~W}$

$$
\text { [dW }=0 \text {, Isochoric process] }
$$

$$
\begin{aligned}
d \mathrm{Q} & =d \mathrm{U}=n \mathrm{C} v d \mathrm{~T} \\
& =n \mathrm{C} v(\mathrm{~T} c-\mathrm{T} b)
\end{aligned}
$$

$$
=\frac{1}{2} \times \frac{\left(\frac{25}{3}\right)}{\left[\left(\frac{5}{3}\right)-1\right]} \times(240)
$$

$$
=\frac{1}{2} \times \frac{25}{3} \times \frac{3}{2} \times 240=1500 \mathrm{~J}
$$

(c) Heat liberated in $c d=-n \mathrm{Cpd} \mathrm{T}$

$$
\begin{aligned}
& =-\frac{1}{2} \times \frac{\gamma \mathrm{R}}{(\gamma \cdots 1)} \times\left(\frac{\mathrm{T} d}{\mathrm{~T} c}\right) \\
& =-\frac{1}{2} \times \frac{125}{9} \times \frac{3}{2} \times(240-480) \\
& =-\frac{1}{2} \times \frac{125}{6} \times 240=2500 \mathrm{~J}
\end{aligned}
$$

Heat liberated in $d a$

Specific Heat Capacities of Gases

$$
\begin{aligned}
& =-\frac{1}{2} \times \frac{\mathrm{R}}{\gamma-1}(\mathrm{~T} a-\mathrm{T} d) \\
& =-\frac{1}{2} \times \frac{25}{2} \times(120-240) \\
& =\frac{25}{4} \times 120=750 \mathrm{~J}
\end{aligned}
$$

27.14 (a)For $a, b^{\prime} V$ ' is constant

So, $\quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
$\Rightarrow \quad \frac{100}{300}=\frac{200}{\mathrm{~T}_{2}}$

$$
\mathrm{T}_{2}=\left(\frac{200 \times 300}{100}\right)=600 \mathrm{~K}
$$

For b, c ' p ' is constant
So, $\quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
$\Rightarrow \quad \frac{100}{600}=\frac{150}{\mathrm{~T}_{2}}$
$\Rightarrow \quad \mathrm{T}_{2}\left(\frac{600 \times 150}{100}\right)=900 \mathrm{~K}$
(b) Work done $=$ Area enclosed under the graph $50 \mathrm{cc} \times 20 \mathrm{KPa}$

$$
\begin{aligned}
& =50 \times 10^{-6} \times 200 \times 10^{3} \mathrm{~J} \\
& =10 \mathrm{~J}
\end{aligned}
$$

(c) 'Q' supplied $=n \mathrm{CudT}$

Now,

$$
\begin{align*}
Q b c & =\left(\frac{P V}{R T}\right) \times\left(\frac{R}{\gamma-1}\right) \times d T \\
& =\frac{200 \times 10^{3} \times 100 \times 10^{-6} \times 300}{600 \times 0.67} \\
& =14.925 \quad(\therefore \gamma=
\end{align*}
$$

27.20 Given, $\frac{C p}{C v}=\gamma$
P_{0} (Initial pressure), V_{0} (Initial volume) (a) (i) Isothermal compression,

$$
P_{1} V_{1}=P_{2} V_{2}
$$

or

$$
P_{0} V_{0}=P_{2} \frac{\mathrm{~V}_{0}}{2} \Rightarrow \mathrm{P}_{2}=2 \mathrm{P}_{0}
$$

(ii) Adiabatic compression

$$
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}
$$

$$
\text { or } \quad 2 \mathrm{P}_{0}\left(\frac{\mathrm{~V}_{0}}{2}\right)^{\gamma}=\mathrm{P}_{2}\left(\frac{\mathrm{~V}_{0}}{4}\right)^{\gamma}
$$

$$
\begin{aligned}
\Rightarrow \quad P_{2} & =\frac{\mathrm{V}_{0}^{\gamma}}{2^{\gamma}} \times 2 \mathrm{P}_{0} \times \frac{4^{\gamma}}{\mathrm{V}_{0}^{\gamma}} \\
& =2^{\gamma} \times 2 \mathrm{P}_{0}=\mathrm{P}_{0} 2^{\gamma+1}
\end{aligned}
$$

(b) (i) Adiabatic compression

$$
\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma}
$$

$$
\text { or } \quad P_{0} V_{0}^{\gamma}=P^{\prime} V_{1} \dot{\gamma}
$$

$$
\Rightarrow \quad \mathrm{P}^{\prime}=\mathrm{P}_{0} 2^{\gamma}
$$

(ii) Isothermal compression
or

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$$
2^{Y} \mathrm{P}_{0} \times \frac{\mathrm{V}_{0}}{2}=\mathrm{P}^{\prime \prime} \cdot\left(\frac{\mathrm{V}_{0}}{2}\right)
$$

$$
P^{\prime \prime}=P_{0} 2^{\gamma} \times 2
$$

$$
\Rightarrow \quad=P_{0} 2^{\gamma+1}
$$

27.21 (a) Given that

$$
P_{1}=P_{0}, V_{1}=V_{0}
$$

For isothermal process,

$$
\begin{aligned}
& \text { (a) Suddenly compressed to } \mathrm{V}_{2}=100 \mathrm{~cm}^{3} \\
& \mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma} \\
& \Rightarrow \quad 10^{5} \times(400)^{1.5}=P_{2}(100)^{1.5} \\
& \Rightarrow \quad \mathrm{P}_{2}=10^{5}(4)^{1.5}=800 \mathrm{KPa} \\
& T_{1} V^{V^{-1}}=T_{2} V_{2}{ }^{\gamma-1} \\
& \Rightarrow 300 \times(400)^{1.5-1}=T_{2}(100)^{1.5-1} \\
& \Rightarrow \quad 300 \times(400)^{0.5}=T_{2}(100)^{0.5} \\
& \Rightarrow \quad \mathrm{~T}_{2}=600 \mathrm{~K} \text {. } \\
& \text { (b) Even if the container is slowly } \\
& \text { compressed the walls are adiabatic so heat } \\
& \text { transferred is zero. } \\
& \text { Thus the values remain, } \\
& \mathrm{P}_{2}=800 \mathrm{KPa} \\
& \mathrm{~T}_{2}=600 \mathrm{~K}
\end{aligned}
$$

$$
P_{2}=\frac{\frac{P_{0} V_{0}}{P_{0}}}{2}=2 V_{0}
$$

For adiabatic process $\mathrm{P}_{3}=\frac{\mathrm{P}_{0}}{4}, \mathrm{~V}_{3}=$?

$$
\begin{aligned}
& \mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma}=\mathrm{P}_{3} \mathrm{~V}_{3}{ }^{\gamma} \\
& \Rightarrow \quad\left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{\mathrm{s}}}\right) \\
& \Rightarrow \quad\left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{\mathrm{P}_{0} / 2}{\mathrm{P}_{0} / 4}\right)=2 \\
& \Rightarrow \quad \frac{V_{3}}{V_{2}}=2^{\frac{1}{\gamma}} \\
& \therefore \quad \mathrm{~V}_{3}=\mathrm{V}_{2} 2^{\frac{1}{\gamma}}=2 \mathrm{~V}_{0} 2^{\frac{1}{\gamma}} \\
& =2^{\frac{\gamma+1}{\gamma}} \mathrm{~V}_{0} \\
& \text { (b) } \mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma} \\
& \text { or }\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)=\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{\frac{1}{7}} \\
& \text { or } \quad V_{2}=V_{0} 2^{\frac{1}{\gamma}}
\end{aligned}
$$

Again isothermal process,

$$
\begin{aligned}
\mathrm{P}_{2} \mathrm{~V}_{2} & =\mathrm{P}_{3} \mathrm{~V}_{3} \\
\therefore \quad \mathrm{~V}_{3} & =\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{P}_{3}}=2.2^{\frac{1}{\gamma}} \mathrm{~V}_{0} \\
& =2^{\frac{\gamma+1}{\gamma}} \mathrm{~V}_{0} \\
\mathrm{PV} & =n \mathrm{RT} \\
\text { Given, } \quad \mathrm{P} & =150 \mathrm{KPa}=150 \times 10^{3} \mathrm{~Pa}, \\
\mathrm{~V} & =150 \mathrm{~cm}^{3}-150 \times 10^{-6} \mathrm{~m}^{3} \\
\mathrm{~T} & =300 \mathrm{~K}
\end{aligned}
$$

27.22
(a) $\quad n=\frac{\mathrm{PV}}{\mathrm{RT}}=9.036 \times 10^{-3}$

$$
=0.009 \text { moles } .
$$

(b) $\frac{\mathrm{C} p}{\mathrm{C} v}=\gamma, \mathrm{C} p-\mathrm{C} v=\mathrm{R}$

So, $\quad \mathrm{C} v=\frac{\mathrm{R}}{\gamma-1}=\frac{8.3}{0.5}=16.65 / \mathrm{moles}$.

WWW.GRADESETTER.COM

$$
\begin{align*}
& P_{1}=150 \mathrm{KPa}=150 \times 10^{3} \mathrm{~Pa}, \\
& P_{2}=\text { ? } V_{1}=150 \mathrm{~cm}^{s} \\
& =150 \times 10^{-6} \mathrm{~m}^{3} \\
& \gamma=1.5 \\
& V_{2}=50 \mathrm{~cm}^{3}=50 \times 10^{-6} \mathrm{~m}^{3} \text {, } \\
& T_{1}=300 \mathrm{~K} ; T_{2}=\text { ? } \\
& \text { Since the process is adiabatic hence - } \\
& P_{1} V_{1}{ }^{\gamma}=P_{2} V_{2}{ }^{\gamma} \\
& \Rightarrow 150 \times 10^{3} \times\left(150 \times 10^{-6}\right)^{\gamma} \\
& =P_{2} \times\left(50 \times 10^{-6}\right)^{y} \\
& \Rightarrow \quad P_{2}=150 \times 10^{s} \times \frac{\left(150 \times 10^{6}\right)^{1.5}}{\left(50 \times 10^{-6}\right)^{1.5}} \\
& =150000 \times(3)^{1.5} \\
& =779.422 \times 10^{3} \mathrm{~Pa} \\
& =780 \mathrm{KPa} \\
& \text { Again, } \\
& P_{1}{ }^{1-\gamma} T_{1}{ }^{\gamma}=P_{1}{ }^{1-\gamma} T_{2}{ }^{\gamma} \\
& \Rightarrow\left(150 \times 10^{3}\right)^{1-1.5} \times(330)^{1.5} \\
& =\left(780 \times 10^{s}\right)^{1-1.5} \times T_{2}^{1.5} \\
& \begin{aligned}
& =\left(780 \times 10^{3}\right)^{1-1.5} \times T_{2}^{1.5} \\
\Rightarrow T_{2}{ }^{1.5} & =\left(150 \times 10^{3}\right)^{1-1.5} \times(300)^{1.5} \times 300^{1.5}
\end{aligned} \\
& =11849.050 \\
& \Rightarrow \quad T_{2}=(11849.050)^{1 / 1.5} \\
& =519.74=520 \text {. } \\
& \text { (d) } \\
& \begin{aligned}
d Q & =W+d U \\
W & =-d U[d Q=0, \text { in adiabatic }] \\
& =-n C d T
\end{aligned} \tag{l}\\
& =-n C v d T \\
& =-0.009 \times 16.6 \times(520-300) \\
& =-0.009 \times 16.6 \times 220 \\
& =-32.8 \mathrm{~J}=-33 \mathrm{~J} \text {. } \\
& \text { (e) } \\
& \begin{array}{l}
=-32.8 \\
=n \mathrm{Cvd} \mathrm{~T}
\end{array} \\
& =0.009 \times 16.6 \times 220=33 \mathrm{~J} . \\
& \text { For A the } V_{A}=V_{B}=V_{C} \quad T_{A}=T_{B}=T_{C} \\
& P_{A} V_{A}=P_{A}^{\prime} 2 V_{A} \\
& \Rightarrow \quad P_{A}^{\prime}=P_{A} \times \frac{1}{2} \\
& \text { For } B \text {, the process is adiabatic } \\
& P_{B} V_{B}{ }^{\gamma}=P_{B}{ }^{\prime}\left(2 V_{B}\right)^{\gamma} \\
& \Rightarrow \quad P_{B}^{\prime}=\frac{P_{B}}{2^{1.5}} \\
& \text { For } C \text { the process is adiabatic } \\
& \frac{V_{C}}{T_{C}}=\frac{V_{C}^{\prime}}{T_{C}^{\prime}} \Rightarrow \frac{V_{C}}{T_{C}}=\frac{2 V_{C}}{T_{C}^{\prime}} \\
& \frac{P_{A}}{2}=\frac{P_{B}}{2^{1.5}}=P_{C} \\
& \Rightarrow P_{A}: P_{B}: P_{C}=2: 2^{1.5}: 1 \\
& P_{1}=\text { Initial pressure, } \\
& 27.24 \\
& \begin{array}{l}
\mathrm{V}_{1}=\text { Initial volume } \\
\mathrm{P}_{2}=\mathrm{F}
\end{array} \\
& \mathrm{P}_{\mathbf{2}}=\text { Final pressure, } \\
& \mathrm{V}_{2}=\text { Final volume } \\
& \text { Given, } \quad \mathrm{V}_{2}=2 \mathrm{~V}_{1} \\
& \text { Isothermal work done } \\
& =n \mathrm{RT}_{1} \ln \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} . \\
& \text { Adiabatic work done } \\
& =\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\gamma-1} \\
& \text { Given that work done at both cases ar } \\
& \text { same. } \\
& \text { Hence, } \\
& n \mathrm{RT}_{1} \ln =\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \\
& =\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\gamma-1} \\
& \text { At adiabatic process, } \\
& P_{2}=P_{1}\left(\frac{V_{2}}{V_{1}}\right)^{\gamma}=P_{1}\left(\frac{1}{2}\right)^{\gamma} \\
& \text { From the equation (1) } \\
& n R T_{1} \ln 2=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}\left(1-\frac{1}{2^{\gamma}} \cdot 2\right)}{\gamma-1} \\
& \text { and } \quad n \mathrm{RT}_{1}=\mathrm{P}_{1} \mathrm{~V}_{1} \\
& \text { So } \quad \ln 2=\frac{1-\frac{1}{2^{\gamma}} \cdot 2}{\gamma-1} \\
& \text { or }(\gamma-1) \ln 2=1-2^{1-\gamma} \\
& 27.25 \\
& \gamma=1.5, \mathrm{~T}=300 \mathrm{~K}, \mathrm{~V}_{1}=1 \mathrm{~L}, \mathrm{~V}_{2}=\frac{1}{2} \mathrm{~L} \\
& \text { volume is suddenly change } \\
& P_{1} V_{1}{ }^{\gamma}=P_{2} V_{2}{ }^{\gamma}
\end{align*}
$$

WWW.GRADESETTER.COM

Specific Heat Capacities of Gases
or $\quad P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=P_{1}(2)^{\gamma}$
or $\quad \frac{P_{2}}{P_{1}}=2^{1.5}=2 \sqrt{2}$
(b) $\quad P_{1}=100 \mathrm{KPa}=10^{5} \mathrm{~Pa}$
and $\quad P_{2}=2 \sqrt{2} \times 10^{5} \mathrm{~Pa}$
Work done by adiabatic process

$$
\begin{aligned}
& =\frac{P_{1} V_{1}-P_{2} V_{2}}{\gamma-1} \\
& =\frac{10^{5} \times 10^{-3}-2 \sqrt{2} \times 10^{5} \times \frac{1}{2} \times 10^{-3}}{1.5-1} \\
& =-82 \mathrm{~J}
\end{aligned}
$$

(c) Internal energy,

$$
d Q=0
$$

$$
\Rightarrow \quad, d U=-d W=-(-82 J)=82 J
$$

(d) $\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$

$$
\begin{aligned}
T_{2} & =T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1} \\
& =300(2)^{0.5} \\
& =300 \times \sqrt{2} \times=300 \times 1.414 \\
T_{2} & =424 \mathrm{~K}
\end{aligned}
$$

(e) The pressure is kept constant. The process is isobaric work done $=n \mathrm{Rd} \mathrm{T}$,

Here, $\quad n=\frac{P V}{R T}=\frac{10^{5} \times 10^{-3}}{R \times 300}=\frac{1}{3 R}$
So work done $=\frac{1}{3 R} \times R(300-424)$

$$
=-41.4 \mathrm{~J} .
$$

(f) $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$

$$
\begin{array}{lc|c|}
& \mathrm{T}_{1} \mathrm{~T}_{2} & \mathrm{~V} / 2 \\
\mathrm{~V}_{1}=\mathrm{V}_{2} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \quad \begin{array}{|l|}
\hline \mathrm{PT}
\end{array} & \mathrm{PT} \tag{1}\\
\hline
\end{array}
$$

Work done in this process

$$
\begin{aligned}
& =n \mathrm{RT} \ln \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}} \\
& =\frac{1}{3 \mathrm{R}} \times \mathrm{R} \times \mathrm{T} \times \mathrm{In} 2
\end{aligned}
$$

$$
\begin{aligned}
& =100 \times \ln 2=100 \times 1.039 \\
& =103
\end{aligned}
$$

(g) Net work done $\begin{aligned} & =-82-41.4+103\end{aligned}$

$$
=-20.4 \mathrm{~J} .
$$

27.26 Given $\gamma=1.5$

We know for adiabatic process $\mathrm{TV}^{\boldsymbol{- 1}}$
$=$ Constant
So, $\mathrm{T}_{1} \mathrm{~V}_{1}{ }^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
...(equation)
As, it is an adiabatic process and all the other conditions are same, hence the above equation can be applied.
So, $\quad \mathrm{T}_{1} \times\left(\frac{3 v}{4}\right)=\mathrm{T}_{2} \times\left(\frac{v}{4}\right)$.

So, $\quad T_{1}: T_{2}=1: 3$
27.27 $\mathrm{V}=200 \mathrm{~cm}^{3}, \mathrm{C} v=12.5 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$, $\mathrm{T}=300 \mathrm{~K}, \mathrm{P}=75 \mathrm{~cm}$.
(a) No. of moles of gasas in each vessels,

$$
\begin{aligned}
n & =\frac{P V}{R T} \\
& =\frac{75 \times 13.6 \times 980 \times 200}{8.3 \times 10^{7} \times 300} \\
& =0.008
\end{aligned}
$$

(b) Heat is supplied to the gas but $d \mathrm{~V}=0$

So, $\quad d \mathrm{Q}=d \mathrm{U}$
$\Rightarrow \quad 5=n \mathrm{C}_{v} d \mathrm{~T}$
$\Rightarrow \quad \Sigma=0.008 \times 12.5 \times d \mathrm{~T}$
$\Rightarrow \quad d \mathrm{~T}=50$ for (A)
Since $\frac{P}{T}=\frac{P_{A}}{T_{A}}$

$$
\begin{aligned}
\Rightarrow \quad \frac{75}{300} & =\frac{\mathrm{P}_{\mathrm{A}} 0.008 \times 12.5}{5} \\
\Rightarrow \quad \mathrm{P}_{\mathrm{A}} & =\frac{75 \times 5}{300 \times 0.008 \times 12.5} \\
& =12.5 \mathrm{~cm} \text { of } \mathrm{Hg}
\end{aligned}
$$

$\operatorname{again} \frac{P}{T}=\frac{P_{B}}{T_{B}}[$ For container B]
$\Rightarrow \quad \frac{75}{300}=\frac{P_{B} 0.008 \times 12.5}{10}$
$P_{B}=25 \mathrm{~cm}$ of Hg.
Mercury moves by a distance
$P_{B}-P_{A}=25-12.5=12.5 \mathrm{~cm}$.
$m_{H e}=0.1 \mathrm{~g}$,
$\gamma_{I}=1.67, M_{H e}=4 \mathrm{~g} / \mathrm{mol}$,
$M_{H 2}=$?; $M_{H 2}=2 \mathrm{~g} / \mathrm{mol}$,
$r_{2}=1.4$
Since it is an adiabatic surroundings
For $\mathrm{He}, \quad d Q=n \mathrm{Cud} T$

$$
\begin{aligned}
& =\frac{m}{2} \times \frac{R}{\gamma-1} \times d T \\
& =\frac{0.1}{4} \times \frac{R}{(1.67-1)} \times d T
\end{aligned}
$$

For H_{2}

$$
d Q=n C v d T
$$

$$
=\frac{m}{2} \times \frac{R}{\gamma-1} \times d T
$$

$$
=\frac{m}{2} \times \frac{R}{1.4-1} \times d T
$$

[where m is the required mass of H_{2}.] Since equal amount of heat is given to both, so, $d Q$ is same in both Equations ... (i) and ... (ii), we get

Initial Volume $=V_{0} \quad \frac{C p}{C v}=\gamma$
(a) For diathermic vessel the temperature inside remains constant.

$$
\begin{array}{ll}
\Rightarrow & P_{1} V_{1}=P_{2} V_{2} \\
\Rightarrow & P_{0} V_{0}=P_{2} \times 2 V_{0} \\
& P_{2}=\frac{P_{0}}{2},
\end{array}
$$

$$
\begin{aligned}
& \frac{0.1}{4} \times \frac{R}{0.67} \times d T \\
& =\frac{m}{2} \times \frac{R}{0.4} \times d T \\
& \Rightarrow \quad m=\frac{0.1}{2} \times \frac{0.4}{0.67} \\
& =0.0298=0.03 \mathrm{~g} . \\
& \text { Initial pressure }=P_{0} \\
& \text { Initial temperature }=T_{0}
\end{aligned}
$$

Temperature $=T_{0}$
For adiabatic vessels the temperatur,
not remain
adiabatic

$$
\begin{array}{rlrl}
& & \mathrm{T}_{0} \mathrm{~V}_{0}^{\gamma-1} & \left.=\mathrm{T} \times\left(2 \mathrm{~V}_{0}\right)\right) \times-1 \\
\Rightarrow & \mathrm{~T}_{2} & =\mathrm{T}_{0} \times 2^{1-\gamma} \tag{b}\\
\Rightarrow & \mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma} & =\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma} \\
\Rightarrow & \mathrm{P}_{0} \mathrm{~V}_{0}^{\gamma} & =\mathrm{P}_{2} \times\left(2 \mathrm{~V}_{0}\right) \gamma \\
\Rightarrow & & P_{2} & =\left(\frac{\mathrm{P}_{0}}{2^{\gamma}}\right)
\end{array}
$$

(b) When the valves are open, temperature remains T_{0} through out

$$
P_{1}=P_{2} \text { and } T_{1}=T_{1}=T_{0}
$$

So,

$$
\begin{aligned}
P_{0} & =P_{1}+P_{2} \\
& =2 P_{1}=2 P_{2} \\
P_{1} & =P_{2}=\frac{P_{0}}{2}
\end{aligned}
$$

27.30 For an adiabatic process, $\mathrm{PV}^{\gamma}=\mathrm{Con}_{\mathrm{St}}$ So

$$
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}
$$

According to the problem

$$
V_{1}+V_{2}=V_{0}
$$

Then the equation (i)

$$
P_{1} V_{2}^{\gamma}=P_{2}\left(V_{0}-V_{1}\right)^{\gamma}
$$

or $\quad\left(\frac{P_{1}}{P_{2}}\right)^{1 / \gamma}=\frac{V_{0}-V_{1}}{V_{1}}$

or
or

$$
\mathrm{V}_{1}=\frac{\mathrm{P}_{2} \frac{1}{\gamma}}{\mathrm{P}_{1} \frac{1}{\gamma}+\mathrm{P}_{2} \frac{1}{\gamma}}
$$

$$
\text { or } \mathrm{V}_{1}\left(\mathrm{P}_{1}^{\frac{1}{y}}+\mathrm{P}_{2}^{\frac{1}{y}}\right)=\mathrm{V}_{0} \mathrm{P}_{2}^{\frac{1}{y}}
$$

r

ture $=T_{0}$

ols the temperaturn
itant. The proce ${ }^{0}$
Specific Heat Capacities of Gases
$t=T_{2} V_{2}^{\gamma-1}$
$=T \times\left(2 V_{0}\right) \gamma-1$
$=T_{0} \times 2^{1-\gamma}$
$=P_{2} V_{2}{ }^{\gamma}$
$=P_{2} \times\left(2 V_{0}\right) \gamma$
$\left(\frac{P_{0}}{2^{\gamma}}\right)$
s are open,
'through out
$i_{1}=T_{0}$
${ }_{1}+P_{2}$
$\rho_{1}=2 P_{2}$
$=\frac{P_{0}}{2}$
${ }_{2}^{\gamma} V^{\gamma}=$ Constant
i^{γ}
$\cdots(i)$
"とい
$27.31 \mathrm{~A}=1 \mathrm{cni}^{2}=1 \times 10^{-4} \mathrm{~m}^{2}$,
$\mathrm{M}=0.03 \mathrm{~g}=0.03 \times 10^{-3} \mathrm{~kg}$.
$P=1 \mathrm{~atm}=10^{5}$ Pascal
$\mathrm{L}=40 \mathrm{~cm}=0.4 \mathrm{~m}, \mathrm{~L}_{1}=80 \mathrm{~cm}=0.8 \mathrm{~m}$,
$P^{\prime}=0.355 \mathrm{~atm}$
The process is adiabatic

$$
\begin{array}{cc}
& \mathrm{P}(\mathrm{~V})^{\gamma}=\mathrm{P}^{\prime}\left(\mathrm{V}^{\prime}\right)^{\gamma} \\
\Rightarrow & 1 \times(\mathrm{A} \times 0.4)^{\gamma}=0.355 \times(\mathrm{A} \times 0.8)^{\gamma} \\
\Rightarrow & 1 \times 1=0.355 \times 2^{\gamma} \\
\Rightarrow & \frac{1}{0.355}=2 \gamma \\
& \gamma \log \gamma=\log \left(\frac{1}{0.355}\right) \\
& \gamma
\end{array}
$$

Hence

$$
\begin{aligned}
\mathrm{V} & =\frac{\gamma p}{\rho} \\
& =\frac{1.4941 \times 105}{m / v} \\
& =446.33 \\
& =447 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

27.32 $\begin{aligned} & \mathrm{V}=1280 \mathrm{~m} / \mathrm{s}, \mathrm{T}=0^{\circ} \mathrm{C}=273^{\circ} \mathrm{K} \\ & \\ & \text { Density of } \mathrm{H}_{2}=0.089 \mathrm{~kg} / \mathrm{m}^{3}, \\ & \mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}\end{aligned}$
$\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
At STP, $\quad P=10^{5} \mathrm{~Pa}$,
we know $\mathrm{V}_{\text {sound }}=\sqrt{\frac{\gamma P}{\rho}}$

$$
1280=\sqrt{\frac{\gamma \times 10^{5}}{0.089}}
$$

or

$$
\begin{aligned}
\gamma & =\frac{1280 \times 1280 \times 0.089}{10^{5}} \\
& =1.48 \\
\frac{\mathrm{C}_{p}}{\mathrm{C}_{v}} & =\gamma \text { or } \mathrm{C}_{p}-\mathrm{C}_{v}=\mathrm{R} \\
\mathrm{C}_{v} & =\frac{\mathrm{R}}{\gamma-1}=\frac{8.31}{1.48-1} \\
& =18.0 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \\
\mathrm{C}_{p} & =\gamma \mathrm{C}_{v}=1.48 \times 18.0 \\
& =26.3 / \mathrm{mol}-\mathrm{K} .
\end{aligned}
$$

27.33 Given that

$$
\begin{aligned}
\mathrm{C}_{p} & =5.0 \mathrm{cal} / \mathrm{mol}-\mathrm{K} \\
& =5.0 \times 4.2 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \\
& =21 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
\end{aligned}
$$

$$
v=\sqrt{\frac{\gamma p}{\rho}}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}=\sqrt{\frac{\gamma \mathrm{PV}}{\mathrm{M}}}
$$

$$
\mathrm{C}_{p}=\frac{\mathrm{R} \gamma}{\gamma-1}
$$

$$
\text { or } 21(\gamma-1)=8.3 \gamma
$$

$$
\text { or } 21 \gamma-8.3 \gamma=21
$$

$$
\text { or } \quad 12.7 \gamma=21
$$

$$
\therefore \quad \gamma=\frac{21}{12.7}=1.653
$$

$$
v=\sqrt{\frac{1.653 \times 1.0 \times 10^{5} \times 0.0221}{4 \times 10^{-3}}}
$$

$$
=960 \mathrm{~m} / \mathrm{s}
$$

27.34 given $\rho=1.7 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$

$$
=1.7 \mathrm{k} / \mathrm{gm}^{3}
$$

$$
\mathrm{P}=1.5 \times 10^{5} \mathrm{~Pa}
$$

$$
\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

$$
f=3.0 \mathrm{KHz}
$$

$$
\begin{aligned}
& 27.35 \\
& \begin{aligned}
\mathrm{T} & =300 \mathrm{~K}, \frac{l}{2}=3.3 \mathrm{~cm} \\
\quad l & =6.6 \times 10^{-2} \mathrm{~m} \\
\therefore \quad \mathrm{~V} & =f l=5 \times 10^{3} \times 6.6 \times 10.2 \\
& =(66 \times 5)=330 \mathrm{~m} / \mathrm{s} \\
v & =\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}} \text { or } v^{2}=\frac{\gamma \mathrm{RT}}{\mathrm{M}} \\
\therefore \quad r & =\frac{330 \times 330 \times 32}{8.3 \times 300 \times 100}=1.399_{j}
\end{aligned} \\
& \mathrm{C}_{v}=\frac{R}{\gamma-1}=\frac{8.3}{0.3995} \\
& =20.7 \mathrm{~J} \mathrm{~mol}-\mathrm{K} \\
& \mathrm{C}_{p}=\mathrm{C}_{v}+\mathrm{R} \\
& =20.7 \mathrm{~J}+8.3 \\
& =29.07 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \text {. }
\end{aligned}
$$

28.1

$$
\begin{aligned}
\mathrm{T}_{1} & =90^{\circ} \mathrm{C}, \mathrm{~T}_{2}=10^{\circ} \mathrm{C} \\
l & =1 \mathrm{~cm}=0.01 \mathrm{~m} \\
\mathrm{~A} & =10 \mathrm{~cm} \times 10 \mathrm{~cm} \\
& =0.1 \times 0.1 \mathrm{~m}^{2}=1 \times 10^{-2} \mathrm{~m}^{2}
\end{aligned}
$$

$$
\mathrm{k}=0.80 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}
$$

$$
\frac{\mathrm{Q}}{t}=\frac{\mathrm{kA}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{l}
$$

$$
=\frac{8 \times 10^{-1} \times 10^{-2} \times(90-10)}{1 \times 10^{-2}}
$$

$$
=64 \mathrm{~J} / \mathrm{s}=3840 \mathrm{~J} / \mathrm{min}
$$

$$
d=1 \mathrm{~cm}=0.01 \mathrm{~m} \quad \mathrm{~A}=0.2 \mathrm{~m}^{2}
$$

$$
\mathrm{T}_{1}=300^{\circ} \mathrm{C}
$$

$$
\mathrm{T}^{2}=80^{\circ} \mathrm{C}
$$

$$
\mathrm{K}=0.025 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}
$$

$$
\frac{\mathrm{Q}}{t}=\frac{\mathrm{kA}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{l}
$$

$$
=\frac{0.025 \times 0.2 \times(300-80)}{0.01}
$$

$$
=110 \text { watt. }
$$

28.3

$$
\mathrm{K}=0: 04 \mathrm{~J} / \mathrm{m}-\mathrm{S}^{\circ} \mathrm{C},
$$

$$
\mathrm{A}=1.6 \mathrm{~m}^{2}
$$

$$
\mathrm{T}_{1}=97^{\circ} \mathrm{F}=36.10^{\circ} \mathrm{C}
$$

$$
\mathrm{T}_{2}=47^{\circ} \mathrm{F}=8.330^{\circ} \mathrm{C}
$$

$1=0.5 \mathrm{ch11}=0.006^{\circ} 4$
28.4 $\mathrm{A}=25 \mathrm{~cm}^{2}=25 \times 10^{-1} \mathrm{~m}^{2}$, $\mathrm{L}=1 \mathrm{~mm}=10^{-3} \mathrm{~m}, \mathrm{~K}=50 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$
$\frac{\mathrm{Q}}{t}=$ rate of conversion of water in to steam

$$
\begin{aligned}
\frac{\mathrm{Q}}{t} & =\frac{100 \times 10^{-3} \times 2.26 \times 10^{6}}{1 \mathrm{~min} .} \\
& =\frac{100 \times 10^{3} \times 2.26}{1 \mathrm{~min}} \\
& =\frac{2.26}{6} \times 10^{4} \\
& =0.376 \times 10^{4} \mathrm{~J} / \mathrm{s} \\
\frac{\mathrm{Q}}{t} & =\frac{\mathrm{kA}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{l} \\
\Rightarrow 0.376 \times 10^{4} & =\frac{50 \times 25 \times 10^{-4} \times(\mathrm{T}-100)}{10^{-3}} \\
\Rightarrow(\mathrm{~T}-1 \mathrm{G} 0) & =\frac{10^{-3} \times 0.376 \times 10^{4}}{50 \times 25 \times 10^{-4}} \\
\therefore & =\frac{10^{-3} \times 0.376}{50 \times 25} . \\
\therefore(\mathrm{T}-100) & =3.008 \times 10^{-4} \times 10^{-3} \times 10^{8} \\
\Rightarrow(\mathrm{~T}-100) & =3.009 \times 10 \\
& =30^{\circ} \mathrm{C}=30 \\
\Rightarrow \quad \mathrm{~T} & =100+30=130^{\circ} \mathrm{C} .
\end{aligned}
$$

40
28.8

$$
\begin{align*}
\mathrm{T} & =27.8=28^{\circ} \mathrm{C} \tag{a}\\
\mathrm{~K} & =45 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}, \\
\mathrm{I} & =60 \mathrm{~cm}=60 \times 10^{-2} \mathrm{~m}
\end{align*}
$$

$$
\begin{aligned}
& 1=6.2 \mathrm{~cm}^{2}=0.2 \times 10-1 \\
& \mathrm{~m} \text { 放 }
\end{aligned}
$$

Rate of heat flow,
$T_{1}=40^{\circ} \mathrm{C}$

$$
\begin{gathered}
\frac{\mathrm{kA}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{l}=\frac{45 \times 0.2 \times 10^{-4} \times 20}{60 \times 10^{-2}} \\
=30 \times 10^{-3}=0.03 \mathrm{~W}
\end{gathered}
$$

28.9

$$
\begin{aligned}
\mathrm{A} & =10 \mathrm{~cm}^{2} ; \mathrm{H}=10 \mathrm{~cm} \\
\frac{\Delta \mathrm{Q}}{\Delta t} & =\frac{\mathrm{kA}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{l} \\
& =\frac{200 \times 10 \times 10^{-4} \times 30}{1 \times 10^{-3}} \\
& =6000 \mathrm{~J} / \mathrm{s}
\end{aligned}
$$

Since heat goes out from both surfao hence net heat coming out

$$
\begin{aligned}
& \frac{\Delta \mathrm{Q}}{\Delta t}=6000 \times 2=12000 \\
& \frac{\Delta \mathrm{Q}}{\Delta t}=m s \frac{\Delta \mathrm{~T}}{\Delta l} \\
& \Rightarrow 6000 \times 2=10^{-3} \times 10^{-1} \times 1000
\end{aligned}
$$

28.11 I

$$
\Rightarrow \quad \frac{\Delta \mathrm{Q}}{\Delta t}=\frac{12000}{420}=28.57
$$

So in one $\sec 28.57^{\circ} \mathrm{C}$ is dropped

$$
\text { Hence time to drop of } 1^{\circ} \mathrm{C}=\frac{1}{28.57} \mathrm{sec}
$$

28.10

$$
=0.035 \mathrm{sec} \text { is required }
$$

$$
\begin{array}{rlrl}
l & =20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}, \\
\mathrm{~A} & =0.2 \mathrm{~cm}^{2}=0.2 \times 10^{-4} \mathrm{~m}^{2} \\
\mathrm{~T}_{1} & =80^{\circ} \mathrm{C} & \mathrm{~T}_{2}=20^{\circ} \mathrm{C} \\
\mathrm{k} & =385 &
\end{array}
$$

1-ve because as r increases Q dect.

$$
\begin{aligned}
\mathrm{A} & =2 \pi r l, \\
\mathrm{H} & =-2 \pi r l \mathrm{~K} \frac{d \theta}{d r} \\
\int_{r_{1}}^{2} \frac{d r}{r} & =-\frac{2 \pi l \mathrm{~K}}{\mathrm{H}} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} d \theta
\end{aligned}
$$

Integrating and simplifying we get

$$
\mathrm{H}=\frac{d \mathrm{Q}}{d t}=\frac{2 \pi \mathrm{~K} l\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\ln \left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)}
$$

28.22 Here the thermal conductivity are

$$
\begin{aligned}
& \text { series, } \quad \frac{\frac{K_{1} \mathrm{~A}\left(\theta_{1}-\theta_{2}\right)}{l_{2}}}{\therefore \quad \frac{\mathrm{~K}_{2} \mathrm{~A}\left(\theta_{1}-\theta_{2}\right)}{l_{1}}} \begin{aligned}
\frac{\mathrm{K}_{1} \mathrm{~A}\left(\theta_{1}-\theta_{2}\right)}{l_{1}} & +\frac{\mathrm{K}_{2} \mathrm{~A}\left(\theta_{1}-\theta_{2}\right)}{l_{2}} \\
& =\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{l_{1}+l_{2}}
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{\frac{\mathrm{K}_{1}}{l_{1}} \times \frac{\mathrm{K}_{2}}{l_{2}}}{\frac{\mathrm{~K}_{1}}{l_{1}}+\frac{\mathrm{K}_{2}}{l_{2}}}=\frac{\mathrm{K}}{l_{1}+l_{2}}
$$

$$
\Rightarrow \frac{\mathrm{K}_{1} \cdot \mathrm{~K}_{2}}{\mathrm{~K}_{1} l_{2}+\mathrm{K}_{2} l_{1}}=\frac{\mathrm{K}}{l_{1}+l_{2}}
$$

28.23

$$
\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}\left(l_{1}+l^{2}\right)}{\mathrm{K}_{1} l_{2}+\mathrm{K}_{2}+l_{1}}
$$

> Considering a concentric cylindrical cell of radius R and thickness $d R$. The radial heat flow through the cell.

$$
\begin{aligned}
& 46 \\
& \begin{aligned}
& \text { Solutions of Concepts of Physics } \\
& \Rightarrow 100 \mathrm{~K}_{\mathrm{B}}-\mathrm{K}_{\mathrm{B}} \theta=1 \mathrm{~K}_{\mathrm{A}} \theta \\
& \quad \mathrm{~T}
\end{aligned} \\
& \text { (b) Resistance of glass }=\frac{1}{a k_{g}}+\frac{1}{a k_{g}} \\
& \begin{array}{|l|l|l|}
\hline & & \\
g & a & g \\
\hline
\end{array} \\
& \text { Resistance of air }=\frac{1}{a k_{a}} \\
& \text { Net resistance }=\frac{1}{a k_{g}}+\frac{1}{a k_{a}}+\frac{1}{a k_{g}} \\
& =\frac{1}{a}\left(\frac{2}{k_{g}}+\frac{1}{k_{a}}\right) \\
& =\frac{1}{a}\left(\frac{2 k_{a}+k g}{k_{b} k_{a}}\right) \\
& =\frac{1 \times 10^{-8}}{2}\left(\frac{2 \times 0.025+1}{0.025}\right) \\
& =\frac{1 \times 10^{-8} \times 1.05}{0.05} \\
& \frac{\mathrm{Q}}{t}=\frac{\left(\theta_{1}-\theta_{2}\right)}{\mathrm{R}} \\
& =385.9=381 \mathrm{~W} . \\
& \text { 28.29 Now, } \frac{Q}{t} \text { remains same in both cases } \\
& \text { In case } I, \frac{K_{A} \times A \times(100-70)}{l} \\
& =\frac{\mathrm{K}_{\mathrm{B}} \times \mathrm{A} \times(70-0)}{l} \\
& \Rightarrow \quad 30 \mathrm{~K}_{\mathrm{A}}=70 \mathrm{~K}_{\mathrm{B}} \\
& \text { In case II, } \frac{K_{B} \times A \times(100-\theta)}{l} \\
& =\frac{\mathrm{K}_{\mathrm{A}} \times \mathrm{A} \times(\theta-0)}{l}
\end{aligned}
$$

围 RAJ PUBLICATIONS

Rs, 162.00

