

N. Avasthi • V. K. Jaiswal

IIT-JEE

Problems in

Physical & Inorganic Chemistry

WWW.GRADESETTER.COM

IIT-JEE

Problems

in

Physical & Inorganic CHEMISTRY

by:

V.K. Jaiswal & N. Avasthi

Directors
Vibrant Academy India (P) Ltd.
KOTA

SHRI BALAJI PUBLICATIONS

(EDUCATIONAL PUBLISHERS & DISTRIBUTORS)

Muzaffarnagar (U.P.) - 251001

WWW.GRADESETTER.COM

Published by:

SHRI BALAJI PUBLICATIONS

6, Gulshan Vihar, Gali No. 1, Opp. Mahalaxmi Enclave,

Jansath Road, Muzaffarnagar (U.P.) Phone: 0131-2660440 (O), 2600503 (R)

M.: 09412113295

website: www.shribalajibooks.com

email: sbjpub@gmail.com

First edition : 2008

Second edition: 2009

Fourth edition : 2011

© All Right Reserved with Author

Price : ₹ 425.00

Typeset by: Dreamshapers Muzaffarnagar

Printed at: **Bhagwati Printers** Meerut

All the right reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the authors and publisher. Any violation/breach shall be taken into legal action.

Dedicated

to

our

Beloved Parents

for

their blessings and support

Grow Green

Save Nature

Preface

It is a matter of great pleasure for us to present the first edition of "IIT-JEE Problems in Physical & Inorganic Chemistry" for IIT-JEE aspirants. This book brings out the experience gained during many years of teaching to the IIT-JEE aspirants. The objective of this book is to provide proper guidance and relevant material, which is really needed for the preparation of IIT-JEE.

In the book, each chapter consists of three levels of problems to cover the wide subject of chemistry in a nut shell. The level of problems given in this book is essentially required for IIT-JEE aspirants.

- LEVEL-1: Problems based on basic concepts and are useful just to begin the topic.
- LEVEL-2: Challenging problems based on twists and wide applications of facts.
- LEVEL-3: Problems based on Comprehensions, Problems with One or More than one Correct Option, Matching Type Problems,
 Assertion Reason Type Problems and Subjective Problems (Integer Type Problems) to make the students familiar with current IIT-JEE Pattern.

The problems are completely supported by answers. In the last, hints and solution have also been provided wherever necessary, to save precious time of students.

We hope that this effort will cater to the needs of IIT-JEE aspirants and as a matter of facts they will really enjoy the subjects with he problems given. We would feel rewarded if you achieve your goal with the help of the present venture.

All attempts have been made to make it free from errors. In the t constructive criticism and valuable suggestion from the readers most welcome to make this effort more useful.

Authors

vkj_123@rediffmail.com

sodiumsir@rediffmoiwwwGRADESETTER.COM

Acknowledgement

We wish to acknowledge our indebtedness to Mr. Nitin Jain, Mr. N.K. Sethia, Mr. M.S. Chouhan, Mr. Vikas Gupta and Mr. Pankaj Joshi for their enthusiastic support.

We would like to thank Mr. Gyan Gautam, Mr. Dhirendra Singh, Mr. G.K. Gupta, Dr. Gopal Chaturvedi, Mr. M.K. Chouhan, Mr. Sunil Jangid and Mr. Prabhat Kumar for their comments and valuable suggestions towards the improvement of this book.

Finally, this part of book will remain incomplete without thanking to Mrs. Priti Avasthi, Mrs. Anjali Jaiswal, whose time was spent during this job. We admire for their patience, understanding and support.

I also pay my sincere thanks to all the esteemed members of M/s Shri Balaji Publications in bringing out this book in such a nice form.

There are undoubtedly many other who are learning their indelible mark on this book. Thanks to every one for their assistance.

Authors

Contents

PHYSICAL CHEMISTRY

7. Stoichiometry	3-43
2. Atomic Structure	44-78
3. Gaseous State	79-119
4. Thermodynamics	120-160
5. Chemical Equilibrium	161-194
6. Chemical Kinetics and Nuclear Chemistry	195-229
7. Ionic Equilibrium	230-268
8. Electrochemistry	269-302
9. Dilute Solution	303-332
10. Solid State	333-360
11. Surface Chemistry	361-381

INORGANIC CHEMISTRY

The state of the s	WWW.GRADESETTER.CO
8. d-Block Elements	292-316
7. p-Block Elements	247-291
6. s-Block Elements	224-246
5. Qualitative Inorganic Analysis	166-223
4. Metallurgy	138-165
3. Co-ordination Compound	88-137
2. Chemical Bonding	28-87
1. Periodic Properties	1-27

Physical Chemistry

(b) 4.98×10^{-22} (c) 6.55×10^{-21} (a) 4.98×10^{-21} 6. Aspirin has the formula C9H8O4. How many atoms of oxygen are there in a tablet weighing (d) 4.81×10^{21} 360 mg? (c) 1.204×10^{24} (b) 1.08×10^{22} (a) 1.204×10^{23} 7. 20 g of an ideal gas contains only atoms of S and O occupies 5.6 L at NTP. What is the mol. wt. of gas? (d) None of these (c) 96 (b) 80 (a) 64 8. A sample of ammonium phosphate, (NH₄)₃ PO₄, contains 6 moles of hydrogen atoms. The number of moles of oxygen atoms in the sample is: WW.GRADESETTER.COM (b) 2 (c) 4 (3) 1

20.

21.

22.

23. 0

(a) 80

9.	Total number of mole	es of oxygen atoms	in 3 litre $O_3(g)$ at 27°C ar	nd 8.21 atm are:
	(a) 3		(c) 1	
10.	3.011×10^{22} atoms o	f an element weigh	t 1.15 gm. The atomic mas	ss of the element is:
	(a) 10	(b) 2.3	(c) 35.5	(d) 23
11.	One atom of an elem	ent x weigh 6.643 >	10 ⁻²³ g. Number of mole	s of atom in 20 kg is:
	() ((1) (0)	() 100	(a) 500
12.	Mass of one atom of the	he element A is 3.98	(c) 100 354×10^{-23} g. How many a	toms are contained in 1 g
and the second	of the element A?			of those
	(a) 2509×10^{23}	(b) 6.022×10^{23}	(c) 12.044×10^{23}	(d) None of these
12	Which of the followin	g contains the large	et mass of hydrogen atom	
13.	(a) 5.0 moles C ₂ H ₂ O ₄	g contains the sarge	(1) 1.1 1.1	
	(c) 15 raples C.H.O.		(d) 4.0 moles C ₂ H ₄ C	2
14	Which has minimum r	number of atoms of	oxygen?	
	(a) 10 mL H ₂ O (l)		(b) 0.1 mole of V_2O_5 (d) 12.044 × 10 ²² mo	lecules of CO ₂
			(d) 12.044 × 10 mo	A Court
15	Rearrange the followin	g (I to IV) in the or	rder of increasing masses: (II) 0.5 gm atom of c	vvaen
	(I) O E mala at ()		5.50	at STP
		ecules of O ₂	(IV) 5.6 lifte of CO ₂	(d) 1 < 11 < 111 < IV
	CATT - TU - III - I	(P) 11 < 1 < IN < III	(c) IV \ II \ III	(u) 1 \ 11 \ 11
16. 7	The total no. of neutron	ns present in 54 mI	11120 (1)	(d) none of these
($^{2}) 3 N$ (D) 30 IV A	(c) A	(u) Holic of the
17. To	otal no. of electrons pr	esent in 48 g Mg	are:	(1) and of these
(a) 24 N. (I	b) 2 N _A	(c) $20 N_A$	(d) none of these
18. Th	e number of neutron	in 5 g of D ₂ O (D is	iH) are:	Deall Stayleneder
(-1	O OF M) 2.5 N	(c) $1 \cdot 1 N_A$	(d) none of these
40 TI 1	1 that atom a	ontain protons ne	utrons and electrons. II	the mass of neutron is
2551	imed to half of its or	iginal value where	eas that of proton is ass	umed to be twice of its
orig	inal value then the at	omic mass of 14 C	will be:	
			(c) 14.28% more	(d) 28.56% less
(a) :	same (b)	14.20% icss	es 63% loss in mass or	heating and become
			3 0570 1055 III IIIdob 01	
	drous. The value of x		(a) 0	(d) 18
(a) 1	0 (b)		(c) 8	
L. A 6.85	g sample of the hyd	rate Sr(OH) ₂ ·xH ₂ O	o is dried in an oven to g	160 H = 10)
Sr(OH) ₂ . What is the value	of x ? (Atomic	weights: $Sr = 87.60$, O	= 16.0, H = 1.0)
(a) 8	(b)	12	(c) 10	(d) 6
	percentage of oxygen	is present in the	compound CaCO ₃ ·3Ca ₃	$(PO_4)_2$?
(a) 23.		45.36%	(c) 41.94%	(d) 17.08%
			ass of one mole of eleme	
One mo	ie of element A has o	ho mass of an act	om of 12 C. What is the at	romic weight of V?
of eleme	nt X has 2.96 times to	ne mass of one ato	off C. What is the at	Office weight of 1

(c) 46.67

(b) 15.77

(d) 40.0

36

24	Λ -: 1			5
24	A given sample of	pure compound contai	ns 9.81 gm of 7n 1 9 10	23 atoms of chromium and
	(a) 7=C= O	gen atoms. What is the	ns 9.81 gm of Zn, 1.8×10^{-2} simplest formula ?	atoms of chromium and
25	The family of	(b) ZnCr ₂ O ₄	(c) ZnCrO ₄	
23.	atomic weight of	acid is HXO_2 . The mas	ss of 0.0242 moles of the	(d) ZnCrO ₆ acid is 1.657 g. What is the
	(a) 35.5	A.f	and the moles of the s	acid is 1.65% g. What is the
26		(b) 28.1	(c) 128	(d) 10.0
	of metal ?	ical formula of vanadiu	m oxide, if 2.74 g of the r	(d) 19.0 netal oxide contains 1.53 g
	(a) V ₂ O ₂	(L) 710	7 17 6 of the 1	metal oxide contact
27.	Determine the am	(D) V()	(c) V ₂ O ₅	(d) V ₂ O ₇
1000	H, 11.8% N and 1	orrical formula of Kelva:	r, used in making bullet pr	(d) V ₂ O ₇ roof vests, is 70.6% C, 4.2%
	(a) C_H NO	3.4% ():	FIRST SAY SON OF U	bus Oso omerim A 404
28.	Dieldrin an incom	$C_7H_5N_2O$	(c) C ₇ H ₉ NO	(d) C ₇ H ₅ NO
	The same of the sa	reide, comains	and O Combustion of	20 72 of Dialdrin Gave
	o o o dilla	O'O'O III O O III O O C	aparata apalmaia 2F 21 m	g of Dieldrin was converted
	(a) C.H.CLO	What is the empiric	al formula of Dieldrin?	
29.	A gaseous comp	(b) C ₈ H ₈ CIO	(c) C ₁₂ H ₈ Cl ₆ O	(d) C ₆ H ₄ Cl ₃ O ₂
	density is 2.28 a/li	id is composed of 85.7	% by mass carbon and 14	4.3% by mass hydrogen. It's
	compound :	re at 300 K and 1.0 at	m pressure. Determine th	ne molecular formula of the
	a) C ₂ H ₂	(b) C II	and the property of	
		(b) C ₂ H ₄	(c) C ₄ H ₈	(d) C_4H_{10}
a	re correct regarding	ig composition of air:	assuming N_2 and O_2 ga	ses are there which options
G	75% by mass of	ig composition of air:	1 17 (22) 50 410/	1 N
(:	a) only (i) is corre	1 (11) /5% by mo	oles N ₂ (iii) 72.41%	by mass of N ₂
			(b) only (ii) is cor (d) both (i) and (i	
				mm and 300 K. What is %
co	emposition of N. 1	by weight in the air?	10 ₂ is 1.13 g/L at /40	min and 500 kt white 15
(a) 78%	(b) 75 5%	(c) 70.02%	(d) 72.75%
32. A	gaseous mixture o	f Ha and CO agas cor	tains 66 mass % of CO.	(d) 72.75% 2. The vapour density of the
mi	xture is:	i ii gana do g gas con	italis of mass 70 or co	markething rates with
		(b) 5.4	(c) 2.7	(d) 10.8
				27.6. The mole fraction of
	O_4 in the mixture		0 -1 - 2 1727 4 58	Selection of the Control of the
	0.1	(b) 0.2	(c) 0.5	(d) 0.8
4 A	compound used i			are four oxygen atoms per
		e molecular weight o		70
		(b) 116		(d) 146
(a)	30 atomia mass	of magnesium is 24.3		im is composed of 79 mole %
5. Ave.	age atomic mass	of magnesium is 24.5	Mg and ²⁶ Mg. Calcula	te mole % of ²⁶ Mg
10	Mg and remaini			
(a)	10	(b) 11	(c) 15	(d) 16
. Indi	um (atomic weigh	t = 114.82) has two	naturally occurring is	otopes, the predominant one
form	has isotopic weigh	ht 114.9041 and abu	indance of 95.72%. W	hich of the following isotopi
weig	hts is the most li	kely for the other iso	otope ?	
	112.94		(c) 113.90	(d) 114.90
(4)	14.7	Co) 110.70	WWW.GF	RADESÉTTER.COM

				PR	OBLEMS IN CHEMISTRY
	6				
	mole of XY ₂ wei	ghs 5 g while 3.011 ×	oine to form two com 10^{23} molecules of X_2Y_1	pounds XY_2 and Y_3 weighs 85 g. T	he atomic masses
- 1	of X and Y are r	espectively:	(c) 40, 30		
	(a) 20, 30 38. 44 g of a sample formula of the co	(b) 30, 40 on complete combust ompound may be:	ion gives 88 gm CO ₂	and 36 gm of $\rm H_2$	O. The molecular
1	(a) C ₄ H ₆ 39. 40 milligram diate air at 1 atm and 3	(b) C ₂ H ₆ O omic volatile substanc 300 K. Atomic weight	of element X is near	vapour that disp rly:	laced 4.92 mL of
1 K	40. A mixture of O_2 an		(c) 200	(d) 10	0
	40. What would be	e mean molecular we ? (gases are non-re	eight, if the gases ar	e mixed in the	ratio b : a under
1	(a) 40 41. Two element X (at.	(b) 48 $mass = 75$) and Y (c)	(c) 62 at. mass = 16) comb	(d) 72 oine to give a c	
	75.8% of X. The for	nula of the compou	nd is:		
1	(a) XY	Control of the contro	(c) X_2Y_2		
	 A sample of phosphor at 527°C. The molecum (a) P₂ 	lar formula of the p	phosphorus vapour	is:	
4.	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I	(b) P ₄	(c) P ₆	(d) P	3
1	3. Manganese forms non- for the compound that	analyzed 64% Mn	es naving the genera	al formula Mn(O_x . The value of x
		(b) 1.83	(c) 2		
44.	1.44 gram of titanium non-stoichiometric comm	m (Ti) reacted a	with excess of	(d) 1	.93
	(2) 2	ound 11 _{1.44} 0. The	value of x is:	J ₂ and prod	uce x gram of
45. A	25.0 mm × 40.0 mm pie	ce of gold foil in o	(c) 1.44	(d) n	one of these
He	ow many gold atoms are 7.7×10^{23} (b)	in the sheet 2 (A	tomic weight	density of gol	d is 19.32g/cm^3 .
(a)	1.7×10^{23} (b)	15 1023	tonne weight : A	u = 197.0	
46. Bala	ance the following equa-	tion and channel	(c) 4.3 x 10	(d) 1	$.47 \times 10^{22}$
the '	ance the following equa products :	aon and choose tr	e quantity which	is the sum of	the coefficients of
(a) 5	(b) 3	$CS_2 + \dots Cl_2$	\longrightarrow CCl ₄ +	S ₂ Cl ₂	
47. Balanc	e the following equation		(c) 6	(4)	
reactan	its and products.	in and choose the	quantity which	is the sum	
(a) + c	te the following equation to and products:	PtCl. + van	\rightarrow PtF ₆ +	is the sum of	the coefficients of
(a) 16	(b) 13	4 · · · · · · · · · · · · · · · · · ·	\longrightarrow PtF ₆ +	CIF+ Vo	
48. Which sta	Itement is false 5		(c) 18	· · · · · AE	
	(b) 13 externent is false for the	e balanced equa	tion -:	(d)	12
(2) 0	C	S + 20	don given belo	w?	
(b) The real	ole of CS ₂ will production of 16 g of oxyg	ce one mole of	CO 2.002		
	ction of 16 g of oxyg	en produces a	20		
	ATRIA CHEST	reduces /.	33 g of CO.		
			2		

n 0.05 nasses (c) The reaction of one mole of O2 will produce 2/3 mole of SO2 (d) Six molecules of oxygen requires three molecules of CS2 Which of the following setups is correct to calculate the weight (in g) of KClO₃ produced from the reaction of 0.150 moles of Cl₂? lecular $3Cl_2 + 6KOH \longrightarrow 5KCl + KClO_3 + 3H_2O$ (a) 0.150 moles Cl₂ × 1 mole KClO₃/3 moles Cl₂ × 122.5 g/1 mole KClO₃ (b) 0.150 moles Cl₂ × 1 mole KClO₃/3 moles Cl₂ × 1 mole KClO₃/122.5 g mL of (c) 0.150 moles Cl₂ × 3 moles Cl₂/1 mole KClO₃ × 122.5 g/1 mole KClO₃ (d) 0.150 moles $\text{Cl}_2 \times 3$ moles $\text{Cl}_2/1$ mole $\text{KClO}_3 \times 1$ mole $\text{KClO}_3/122.5$ g 50. 2.0 g sample contain mixture of SiO₂ and Fe₂O₃, on very strong heating leave a residue weighing 1.96 g. The reaction weighing 1.96 g. The reaction responsible for loss of weight is weight Fe_2O_3 (s) \longrightarrow Fe_3O_4 (s) + O_2 (g), (unbalance equation) under What is the percentage by mass of SiO2 in original sample? 51. What volume of air at STP containing 21% of oxygen by volume is required to completely burn (c) 40% sulphur (S₈) present in 200 g of sample, which contains 20% inert material which does not aving burn. Sulphur burns according to the reaction $\frac{1}{8}S_8(s) + O_2(g) \longrightarrow SO_2(g)$ vesel (c) 112 litre (b) 320 litre **52.** For the reaction, $2\text{Fe}(\text{NO}_3)_3 + 3\text{Na}_2\text{CO}_3 \longrightarrow \text{Fe}_2(\text{CO}_3)_3 + 6\text{NaNO}_3$ Initially if 2.5 mole of Fe(NO₃)₂ and 3.6 mole of Na₂CO₃ is taken. If 6.3 mole of NaNO₃ is of xobtained then % yield of given reaction is: (c) 87.5 (d) 100 53. How many moles of P₄ can be produced by reaction of 0.10 moles Ca₅(PO₄)₃F, 0.36 moles of SiO₂ and 0.90 moles C according to the following reaction? $4 \text{ Ca}_5(\text{PO}_4)_3 \text{F} + 18 \text{ SiO}_2 + 30 \text{ C} \longrightarrow 3P_4 + 2 \text{CaF}_2 + 18 \text{CaSiO}_3 + 30 \text{ CO}$ (b) 0.030 (c) 0.045 54. Some older emergency oxygen masks containing potassium superoxide, KO₂ which reacts with CO2 and water in exhaled air to produce oxygen according to the given equation. If a person exhales 0.667 g of CO₂ per minute, how many grams of KO₂ are consumed in 5.0 of $4\text{KO}_2 + 2\text{H}_2\text{O} + 4\text{CO}_2 \longrightarrow 4\text{KHCO}_3 + 3\text{O}_2$ minutes? (d) 5.38 55. The mass of N_2F_4 produced by the reaction of 2.0 g of NH_3 and 8.0 g of F_2 is 3.56 g. What is $2NH_3 + 5F_2 \longrightarrow N_2F_4 + 6HF$ the per cent yield? (d) None of these (b) 71.2 56. Phosphoric acid (H₃PO₄) prepared in a two step process. $(2) P₄O₁₀ + 6H₂O \longrightarrow 4H₃PO₄$ $(1) P_4 + 5O_2 \longrightarrow P_4O_{10}$

		The same of the sa	
8		PROBLEMS IN CHEMISTRY	
We allow 62 g of phosphorus to re-	act with excess oxygen wh	ich form P ₄ O ₁₀ in 85% yield. In	ST
the step (2) reaction 90% yield of	H ₃ PO ₄ is obtained. Produ	uced mass of H ₃ PO ₄ is:	6
(a) 37.485 g (b) 149.949 57. 0.8 mole of a mixture of CO and	9 g (c) 125.47 g	(d) 564.48 g	
complete conversion of all the CO ₂	into Na ₂ CO ₂ . How many	moles more of NaOH would it	
require for conversion into Na ₂ CO ₃ ,	if the mixture (0.8 mole) i	is completely oxidised to CO 2?	
(a) 0.2 (b) 0.6 58. Silver oxide (Ag ₂ O) decomposes at t	(c) 1	(d) 1.5	
A 1.60 g sample of impure silver ox mass of the silver oxide in the samp	ide vields 0.104 g of oxyg	gen gas. What is the per cent by	
(a) 5.9 (b) 47.125	(c) 94.25	(d) 88.2	
59. What is the molar mass of diacidic ignition produced 5 gm residue?			
		(d) None of these	
60. One gram of the silver salt of an org silver. If the weight percentage of carl one-half the weight percentage of ox	bon in it 8 times the weig	ght percentage of hydrogen and	
(a) $C_4H_6O_4$ (b) $C_4H_6O_6$	(c) C ₂ H ₆ O ₂	(d) C ₅ H ₁₀ O ₅	
61. 0.607 g of a silver salt of tribasic organ What is the mol. wt. of the acid?	nic acid was quantitative	ely reduced to 0.37 g of pure Ag.	
(a) 207 (b) 210	(c) 531	(d) 324	
62. An ideal gaseous mixture of ethane (C	2H ₆) and ethene (C ₂ H	4) occupies 28 litre at STP. The	
mixture reacts completely with 128 g (the mixture is:	o ₂ to produce CO ₂ and	H ₂ O. Mole fraction at C ₂ H ₆ in	
(a) 0.6 (b) 0.4			
63. 20 mL of a mixture of CO and H ₂ were r	nived with expense of O	(d) 0.8	
(27°C) and one atmospheric pressure. De original mixture.	etermine the volume ra	or responds to room temperature atio $V_1:V_2$ of CO and H_2 in the	
(a) 1:2 (b) 3:2	(c) 2:3		
04. The percentage by volume of C H in a	The second secon	(d) 4:1	
64. The percentage by volume of C_3H_8 in a 100 mL of the mixture is burnt in exces (a) 90 mL (b) 160 mL	Z, , ordinc (I CUa Droduced is:	
03. 40 mL gaseous mixture of CO orr	(c) 140 IIIL	(d) none of these	
65. 40 mL gaseous mixture of CO, CH ₄ and the gases occupied 36.5 mL. After treatment on treatment with alkaline pyrogallol, the Percentage of CH ₁ in the continuous section.	was exploded wit	h 10 mL of oxygen On cooling	
		ume reduced by 9 ml and and	3,
o of olly ill life original	le volume further rec	duced.	U
(2))) =	C 15:		
66. A gaseous mixture of	(c) 7.5	(4) 1=	
11.0 litre CO under and butane	of volume 3 litre on	(a) 15	
66. A gaseous mixture of propane and butane 11.0 litre CO ₂ under standard conditions The ratio of volume of butane to propane (a) 1:2	of temperature and	complete combustion produc	es
(a) 1 · 2	7 10.		
67. Fluoriment (b) 2:1	(0) 0		
mg of al	(c) 3:2	(d) 3 · 1	
ing of the steroid in 500 ml. of water 1.0	ac steroid. A solutio	n is prepared 1	
67. Fluoxymesterone, C ₂₀ H ₂₉ FO ₃ , is an anaboling of the steroid in 500 mL of water, 1.0 ml of 1.00 L. What is the resulting molarity 2	portion of this solu	tion is prepared by dissolving 1	0.0
mg of the steroid in 500 mL of water, 1.0 ml of 1.00 L. What is the resulting molarity? (a) 1.19×10^{-10} (b) 1.19×10^{-7}	3010	duon is diluted to a final volu	ma
(b) 1.19×10^{-10}	(0) = 0-	3.0	THE
	(c) 5.95×10^{-8}	(4) 220 +- 11	
		(d) 2.38 × 10 ⁻¹¹	

	TOICHIOMETRY
6	8. The lead nitrate, $Pb(NO_3)_2$, in 25 mL of a 0.15 M solution reacts with all of the aluminium sulphate, $Al_2(SO_4)_3$, in 20 mL of solution. What is the molar concentration of the $Al_2(SO_4)_3$? $3Pb(NO_3)_2(aq) + Al_2(SO_4)_3(aq) \longrightarrow 3PbSO_4(s) + 2Al(NO_3)_3(aq)$ $3Pb(NO_3)_2(aq) + Al_2(SO_4)_3(aq) \longrightarrow 3PbSO_4(s) + 2Al(NO_3)_3(aq)$
	9. Concentrated HNO ₃ is 63% HNO ₃ by mass and has a density of 1.4 g/mL. How many millilitres of this solution are required to prepare 250 mL of a 1.20 M HNO ₃ solution?
	(a) 18.0 (b) 21.42 (c) 25.0 (d) 21.42 (e) 25.0 (
71	(Atomic weights . Br = 20%, 16 = 20%
	should be mixed? (a) 50 mL, 25 mL (b) 20 mL, 60 mL, 20 mL (d) 55 mL, 20 mL, 25 mL (d) 55 mL, 20 mL, 25 mL (e) 40 mL, 30 mL, 30 mL (c) 40 mL, 30 mL, 30 mL
73	What is the molarity of SO_4^{-1} ion in aqueous SO_4^{-1} ion in aque
74.	mixed. Molarity of Cl ions in the resulting (c) 0.1 M
75.	(a) 0.333 M (b) 0.000 M and molality (m) is given by:
	(a) $m = \frac{1000 \mathrm{p} - M_1}{1000 \mathrm{m}}$
76.	(c) $m = \frac{1000 \text{ MM}}{1000 \text{ p} - \text{MM}_1}$ (d) $m = \frac{1000 \text{ p} - \text{MM}_1}{1000 \text{ p} - \text{MM}_1}$ Molarity and molality of a solution of an liquid (mol. wt. = 50) in aquous solution is 9 and 10 Molarity and molality of a solution? (c) 1.05 g/cc (d) 1.35 g/cc respectively. What is the density of solution? (e) 1.05 g/cc (f) 1.05 g/cc (h) 0.95 g
77.	An aqueous solution of ethanol 12. (a) 1.79 (b) 2.143 (c) 1.951 (d) None of these (c) 1.951 (a) 1.79 (b) 2.143 (c) 1.951 (d) None of these (d) 1.79 (d) 0.80 M (e) 1.2 M (d) 0.80 M (e) 1.2 M (e) 1.2 M
78.	(a) 0.06 M (b) 0.09 M (c) of concentrated HCl (delisity 12.5)
5	Calculate the mass of annyurous colution having 37% HCl by weight. (c) 4.44×10^{-3} g (d) $0.444 \mu g$ (a) $4.44 g$ (e) $4.44 g$

92.

10	
80. 100 mL of 10% NaOH (w/V) is added to 100 mL of 10% HCl (w/V). The resultant solution	
becomes: becomes: becomes:	
(a) alkaline (b) strongly alkaline (c) acidic 81. Calculate the molality of 1 L solution of source (d) resultant solution	STOICHIOMET
(a) alkaline (b) strongly alkaline (c) acidic solution is 1.80 g mL ⁻¹ . (a) 8.16 (b) 8.6	93. 1 L
(a) 8.16 (b) 0.6 (w/V), given that the density of the	Na ₂
62. Flow finding militing a (C) 1 00	(a)
82. How many millilitres of 0.1 M H ₂ SO ₄ must be added to 50 mL of 0.1 M NaOH to give a (a) 400 mL (b) 8.6 (c) 1.02 (d) 10.8 (a) 400 mL (b) 200 mL	94. On tot
(a) 400 mL (a) 400 mL of 0.05 M in H ₂ SO 2	(a)
(a) 400 mL (b) 200 mL (c) 100 mL (d) None of these (a) 1.5 (b) 1	95. Ph
solution? (d) None of these	(a
(a) 1.5	96. T
34. 342 gill of 20% by man (c) 1.2 (d) 1.8	(
84. 342 gm of 20% by mass of Ba(OH) ₂ solution (sp. gr. 0.57) is reacted with 1200 mL of solution by nature of the above solution is identified, is: (b) 1 (c) 1.2 (d) 1.8 2M HNO ₃ . If the final density is same as pure water then molarity of the ion in resulting (a) 0.25 (b) 0.5 M	97.
(h) 0.23	98.
of 112504 Solution having molarity 1 M and density 1 F g/ml is mived with 400 ml	
(a) 4.4 Modern of H ₂ SO ₄ solution, if final density is 1.25 g/mL:	
	99.
86. What volume of HCl solution of density 1.2 g/cm ³ and containing 36.5% by weight HCl, must be allowed to react with sing (7a) in order to like the A.O. of hadrons 2	
(c) 222 cg of react with Zinc (Zin) in order to inberate 4.0 g of hydrogen ?	100
87. A bottle of an aqueous H ₂ O ₂ solution is labelled as '28 V' H ₂ O ₂ and the density of the solution	100
in g/mL is 1.25. Choose the correct option:	101
(a) Molality of H ₂ O ₂ solution is 2 (b) Molarity of H ₂ O ₂ solution is 5 (c) Molality of H ₂ O ₂ solution is 2.15 (d) None of these	
88. The impure 6 g of NaCl is dissolved in water and then treated with excess of silver nitrate	10
solution. The weight of precipitate of silver chloride is found to be 14 g. The % purity of NaCl solution would be:	
(a) 95% (b) 85% (c) 75% (d) 65%	1
89. 10 L of hard water required 5.6 g of lime for removing hardness. Hence temporary hardness in	
ppm of CaCO ₃ is:	
(a) 1000	
20. A sample of peanut oil weighing 2 g is added to 25 mL of 0.40 M KOH. After saponification complete, 8.5 mL of 0.28 M H ₂ SO ₄ is needed to neutralize excess of KOH. The saponification	is on
number of peanut oil is:	
(saponification number is defined as the milligrams of KOH consumed by 1 g of oil)	
(a) 146.72 (b) 223.44 (c) 98.9 (d) None of these	
Al ₂ (SO ₄) ₃ solution of 1 molal concentration is present in 1 litre solution of 2.684 g/cc. H	woF
many moles of BaSO ₄ would be precipitated on adding BaCl ₂ in excess?	1011
(a) 2 moles (b) 3 moles (c) 6 moles (d) 12 moles	
(0) 0 1110100	2204
A certain public water supply contains 0.10 ppb (part per billion) of chloroform $(CHCl_3)$, many molecules of $CHCl_3$ would be obtained in 0.478 mL drop of this water?	. How
(assumed $d = 1 \text{ g/mL}$)	
a) $4 \times 10^{-3} \times N_A$ (b) $10^{-3} \times N_A$ (c) $4 \times 10^{-10} \times N_A$ (d) None of these	se

WWW.GRADESETTER.COM

	- L
STOICHIOMETRY	11
93. 1 L of pond water contains 20 mg of Ca ²⁺ and 12 mg of Na ₂ CO ₃ solution required to soften 5000 L of pond v (a) 500 L (b) 50 L (c) 5 L	rater?
total hardness in terms of ppm of CaCO ₃ ?	aCl ₂ and 1.9 mg of MgCl ₂ . What is the
95. Phosphorous has the oxidation state of + 1 in: (a) Orthophosphoric acid (b) Ph	pm (d) 6 ppm osphorous acid
96. The oxidation state(s) of Cl in CaOCl ₂ (bleaching po	etaphosphoric acid owder) is/are:
(a) +1 only (b) -1 only (c) + 97. The oxidation number of sulphur in S_8 , S_2F_2 and H (a) 0 , +1, -2 and 6 (b) +2, 0 , +2 and 6 (c) 0 , 98. Fe shows an oxidation state of +1 in:	1 and -1 (d) none of these ${}_{2}S H_{2}SO_{4}$ and respectively are: $+1$, $+2$ and 4 (d) -2 , 0 , $+2$ and 6
(a) Fe(CO) ₅ (b) [E(CN) ₆] ₅ (d) F	e(H ₂ O) ₅ NO] SO ₄
99. When SO ₂ is passed into an acidified potassium dich	omate solution, the oxidation numbers of
sulphur and chromium in the final products respect $(a) +6, +6 \qquad (b) +6, +3 \qquad (c) 0$, +3 (d) +2, +3
	-3, +5 (a) $-5, +3$
	6, - 6
102. In Fe(II)-MnO ₄ titration, HNO ₃ , is not used becau	it reduces MnO ₄
(a) It Oxidises iviii	it reduces Fe ³⁺ formed
(c) it oxidises Fe ²⁺	g KOH then the true statement is:
(c) it oxidises Fe^{2T} (d) 103. 0.1 mole H_3PO_x is completely neutralised by 5.6	g Nort
(a) x = 3 and given acid is dibasic	
(b) $x = 4$ and given acid has no P-H linkage (c) $x = 2$ and given acid does not form acid salt	
(c) $x = 2$ and given acid does not rest	a la la la la constitución de la
(d) all of these 104. When potassium permanganate is titrated again permanganate is titrated	nst ferrous ammonium sulphate ili acidic
104. When potassium permanganate is thrated again medium, the equivalent weight of potassium per medium, the equivalent weight of potassium per medium, the equivalent weight (b)	manganate is:
medium, the equivalent (b) molecular weight	molecular weight
(a) 3	molecular weight
- alogular weight (d	10
(c) — 2	and to a new compound X. Assuming
(c) $\frac{\text{molecular Weight}}{2}$ 105. 2 mole of N ₂ H ₄ loses 16 mole of electron is bein that all of the N appears in the new compound (b) $= 2$	g converted to a new configuration state of 'N' in X?
105. 2 mole of N 2114 to the new compound.	What is the oxidation state $(d) + 4$
that all of the N appears in the control of t	(a) + 2
(a) -1 the half reaction,	$FeS_2 \longrightarrow Fe_2O_3 + 5O_2 IS$
(a) -1 (b) -2 (a) -1 (b) -2 (c) FeS ₂ in the half reaction, (b) M/11	e) $M/6$ (d) $M/1$
C. S. C.	

116.

117. W

12	TOTAL PROPERTY.	PROBLEMS IN CHEMISTRY	1000
107. The equivalent weight of HCl in th	e given reaction is:		STOICHI
$K_2Cl_2C_7 + 14HCl \longrightarrow 2KCl + 2CrC$	$Cl_3 + 3Cl_2 + H_2O$		
		(d) 85.1	118.
108. Equivalent weight of H_3PO_2 when (a) M (b) $M/2$	it disproportionate into	PH ₃ and H ₃ PO ₃ is:	
109. In the following reaction, $As_2S_3 + I$	(c) $M/4$ $H^+ + NO^- \longrightarrow NO + H$	(d) $3M/4$ $I_2O + AsO_2^{3-} + SO_2^{2-}$	119.
the equivalent weight of As ₂ S ₂ is re	elated to its molecular w	reight by:	
(b) M/4	(c) M/24	(d) M/28	
110. 6×10^{-3} mole $K_2Cr_2O_7$ reacts completely	etely with 9×10^{-3} mole	$e X^{n+}$ to give XO_3^- and Cr^{3+} . The	120
value of n is: (a) 1 (b) 2	() 0	(d) None of these	
(a) 1 (b) 2 111. When BrO ₃ ion reacts with Br in act	(c) 3		
in this reaction is:	d medium, bi ₂ is nocra	icu. The equiversity	12
(a) $\frac{5M}{8}$ (b) $\frac{5M}{3}$	(c) $3M$	(d) $\frac{4M}{6}$	
		0	
112. Decreasing order (first having highest	and then others follow	ving it) of mass of pure NaOH in	
each of the aqueous solution: (i) 50 g of 40% (w/W) NaOH			1
(ii) 50 mL of 50% (w/V) NaOH [d _{soin}	= 1.2 g / mI.		
(iii) 50 g of 15 M NaOH $[d_{\text{soln.}} = 1 \text{ g}]$			
	(c) ii, iii, i	(d) ii, i, iii	
113. If m_A gram of a metal A displaces m_B g			
equivalent weights are E_A and E_B resp	pectively then equivale	ent weight of A can be armosted	
as:	recuvery their equivate	ent weight of A can be expressed	
$m_A = m_A = m_A \times m_A $	$m_{\scriptscriptstyle P}$ $m_{\scriptscriptstyle -}$	0 M _ 00 h 70 1 6	
(a) $E_A = \frac{m_A}{m_B} \times E_B$ (b) $E_A = \frac{m_A \times E_B}{E_B}$	(c) $E_A = \frac{m_B}{m}$	$\times E_B$ (d) $E_A = \sqrt{\frac{m_A}{E_B}} \times E_B$	
4. For the redox reaction, $MnO_4^- + C_2O_2^-$	2- Lu+ Nr-2+	√ m _B	
the correct coefficients of the reactions	$f \mapsto H \longrightarrow MIn$	$+CO_2 + H_2O$	
the correct coefficients of the reactants MnO_4^- , $C_2O_4^-$, H^+ :	for the balanced rea	action are respectively	
	of the case of the cost		
(a) 2, 5, 16 (b) 16, 3, 12 In a chemical reaction K Cr O + VII	(c) 15, 16, 12	2 (d) 2, 16, 5	
In a chemical reaction, $K_2Cr_2O_7 + xH_2$ value of x , y and z respectively are:	$_{2}SO_{4} + ySO_{2} \longrightarrow F$	$(2SO_4 + Cr_2(SO_4)_3 + zH_2O; t)$	he
(2) ** - 1			
(c) $x = 3, y = 2, z = 1$	(b) $x = 4, y =$	= 1, z = 4	
Hydrazine reacts with KIO ₃ in presence	(d) $x = 2, y =$	= 2, z = 1	
N H 10-	of HCl as		
$10_{2}\Pi_{4} + 10_{3} + 2\Pi_{3}$	$H^+ + Cl^- \longrightarrow ICl +$	$N_2 + 3H_2O$	
re equivalent masses of N ₂ H ₄ and KIO	a respectively		
8 and 53.5 (b) 16 and 53.5	(c) 9 cml cm	6 (d) 8 and 87	Service
nat will be the normality of a solution of a	obtained 1	6 (d) 8 and 87	473 4 -
0 2:1 by volume?	brailled by mixing	0.45 N and 0.60 N NaOH is	the
0.4 N (b) 0.5 N		i i i i i i i i i i i i i i i i i i i	i tile
(b) 0.3 N	(c) 1.05 N	(4) 015	13000
	THE RESERVE OF THE PARTY OF THE	(d) 0.15 N	-216

WWW.GRADESETTER.COM

le

13

140.

		ODUDI Elle III	
14		PROBLEMS IN CHEMISTRA	
Calculate the molarity of lead ions if 0.35 precipitation of lead ions as sulphate.	55 g of sodium sulpha	te was needed for complete	STOICHIOMETR
(a) $1.25 \times 10^{-3} M$ (b) $2.5 \times 10^{-3} M$	(c) $5 \times 10^{-3} M$	(d) None of these	woul
130. What volume of HNO ₃ (sp. gravity 1.05 g	mL^{-1} containing 12.6 ((w/W) of HNO3) that reduce	phen (a)
into NO is required to oxidise iron 1 g Fe	SO ₄ ·7H ₂ O in acid med	lium is?	141. A sa
	Control of the Contro	(d) 0.65 mL	solu mo
131. The total volume of 0.1 M KMnO ₄ solution oxalate and ferrous sulphate in a mixture		idize 100 mg each of ferrous	(a) 142. Ca
(a) 1.096 mL (b) 1.32 mL		(d) none of these	M
132. When 2.5 g of a sample of Mohr's salt rea	cts completely with 5	0 mL of $\frac{N}{10}$ KMnO ₄ solution.	143. A
The % purity of the sample of Mohr's salt		(d) 40	(
(a) 78.4 (b) 70 133. 4 mole of a mixture of Mohr's salt and	(c) 37		
complete oxidation in acidic medium. The	mole % of the Mohr	S Salt III the material	144.
(a) 25 (b) 50	(c) 60	(d) /3	
134. The equivalent weight of a metal is double	than of oxygen. How	w many times is the weight of	
it's oxide greater than the weight of the m (a) 1.5 (b) 2	(c) 3	(d) 4	145
135. A metal oxide has the formula X_2O_3 . It ca water. 0.1596 g of metal oxide requires 6 n	n be reduced by hyd	drogen to give free metal and omplete reduction. The atomic	
weight of the metal (in amu) is:	(c) 5.58	(d) 55.8	1.
(a) 15.58 (b) 155.8 136. In the mixture of $(NaHCO_3 + Na_2CO_3)$, vol			in
indicator and y mL with methyl orange ind for complete reaction of Na_2CO_3 is:	icator in th <mark>e same ti</mark>	tration. Hence, volume of Ho	Cl
	(c) x/2	(d) (y-x)	
137. 0.1 g of a solution containing Na ₂ CO ₃ a	nd NaHCO ₃ requir	res 10 mL of 0.01 N HCl	for
neutralization using phenolphthalein as an	indicator. wt. % o	f Na ₂ CO ₃ is:	
(a) 25 (b) 32	(c) 50	(d) None of these	
138. A mixture of NaOH and Na2CO3 required	25 mL of 0.1 M HC	Il using phenolphthalein as	s the
indicator. However, the same amount of to methyl orange was used as the indicator. The was:	the mixture requir e molar ratio of Na	ed 30 mL of 0.1 M HCl v OH and Na ₂ CO ₃ in the mix	when xture
(a) 2:1 (b) 1:2	(c) 4:1	(d) 1:4	
39. 100 mL solution of NaOH and Na ₂ CO ₃ wa		h N/10 HCl in presence of	of LIDb
17.5 mL is required to end point. After th required. The amount of NaOH in mixture	is MeOH was add	led and 2.5 mL of same	HCl is
(a) 0.06 g per 100 mL		000 7	
(c) 0.05 g per 100 mL	(b) 0.06 g per		
	(d) 0.012 g p	er 200 mL	
.1 gram of a sample of CaCO ₃ was strongly 100 mL of 0.5 M NaOH. Assuming 90% pu	y heated and the rity for the samp	CO ₂ liberated was absole. How much mL of 0.	orbed in .5 M HCl

CHEMISTRY	
complete	STOICHIOMETRY
lese	
t reduce	would be required to react with the solution of the alkali and Na ₂ CO ₃ to reach the 141. A sample of pure sodium carba. (c) 82 = 1
20/1	(a) 73 mL (b) 41 solution of the alkali and Na ₂ CO ₂ to reach the
f ferrous	molarity of the acid. (a) 0.1 M (b) 0.2 M (d) 100 mL (d) 100 mL (d) 100 mL (e) 101 mL (f) 102 mL (h) 102 mL
ese	142. Calculate the mass of anhydrous oxalic acid, which can be oxidised to CO ₂ (g) by 100 mL of an (a) 45 g (b) 22 5 g (b) 22 5 g
olution.	MnO ₄ solution, 10 mL of which is capable of oxidising 50 mL of 1N I to I ₂ . (c) 0.4 M (d) None of these (a) 45 g (b) 22.5 g (c) 30 g (d) 12.5 g
	0.12 N NaOH separately. What is the molar ratio of NaHC ₂ O ₄ and KHC ₂ O ₄ of the molar ratio of NaHC ₂ O ₄ and KHC ₂ O ₄ of the molar ratio of NaHC ₂ O ₄ and KHC ₂ O ₄ of the molar ratio of NaHC ₂ O ₄
O ₇ for	(a) (a) (b) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
	144. If a g is the mass of NaHC 0 (c) 1:3 (d) 3:1
ght of	144. If a g is the mass of NaHC ₂ O ₄ required to neutralize 100 mL of 0.2 M NaOH and b g that required to reduce 100 mL of 0.2 M NAOH and b g that
in of	(a) $a = b$ (b) $2a - b$ (c) $2a - b$
	145. 2 mole, equimolar mixture of $Na_2C_2O_4$ and $H_2C_2O_4$ required V_1L of 0.1 M KMnO ₄ in acidic
and	medium for complete oxidation. The same amount of the mixture required V ₂ L of 0.2 M NaOH
omic	for neutralization. The ratio of V_1 to V_2 is:
and the	(b) 2.1 (c) 4:5 (d) 5:4
	146. A mixture containing 0.05 mole of K ₂ Cr ₂ O ₇ and 0.02 mole of KMnO ₄ was treated with
lein	excess of KI in acidic medium. The liberated iodine required 1.0 L of Na ₂ S ₂ O ₃ solution for titration. Concentration of Na ₂ S ₂ O ₃ solution was:
HCl	(a) 0.40 mol L ⁻¹ (b) 0.20 mol L ⁻¹ (c) 0.25 mol L ⁻¹ (d) 0.30 mol L ⁻¹
STATE	147. 25 mL of 2 N HCl, 50 mL of 4 N HNO ₃ and x mL of 2 M H ₂ SO ₄ are mixed together and the
	total volume is made up to 1 L after dilution. 50 mL of this acid mixture completely reacted
for	with 25 mL of a 1 N Na ₂ CO ₃ solution. The value of x is:
	(a) 250 mL (b) 62.5 mL (c) 100 mL (d) None of these
	148 In an iodometric estimation, the following reactions occur
e	$2C_{11}^{2+} + 4I^{-} \longrightarrow C_{11}I_{2} + I_{2}$; $I_{2} + 2Na_{2}S_{2}O_{3} \longrightarrow 2Na_{1} + Na_{2}S_{4}O_{6}$
	0.12 mole of CuSO ₄ was added to excess of KI solution and the liberated iodine required
n	
e	120 mL of hypo. The molarity of hypo solution (d) 1.0 (d) 1.0
	(a) 2
	149. 1 g mixture of equal number of mole of Li ₂ CO ₃ and other inctar carbonate atomic weight of 0.5 N HCl for complete neutralisation reaction. What is the approximate atomic weight of
	of 0.5 N HCl 101 complete near
	the other metal? (a) 25 (b) 23 (c) 24 (d) 39 (a) 25 (b) 23 (e) 25 (e) 24 (f) 39 (f) 25 (g) 25 (g) 26 (h) 39 (g) 25 (h) 47H ₂ O were dissolved in dilute sulphuric acid and water and in the sample of FeSO ₄ .7H ₂ O were dissolved in the sample of this solution required 20 mL of 0.02 M KMnO
	(a) 25 150. 32 g of a sample of FeSO ₄ ·7H ₂ O were dissolved in dilute sulphuric acid and water and water acid acid and water acid and water acid and water acid and water acid acid acid acid acid acid acid acid
	solution for complete oxidation. (c) 89.5 (d) None of these
	(a) 34.75 (b) 69.5

16 A mixture of NH₄NO₃ and (NH₄)₂HPO₄ contain 30.40% mass per cent of nitrogen. What is (a) 2:1 (b) 1:2 (c) 3...

2. What value of 75% alcohol by weight $(d = 0.80 \text{ g/cm}^3)$ must be used to prepare 150 cm³ of (a) 67.5 mL (b) 56.25 mL (c) 56.25 mL (d) 67.5 mL (e) 56.25 mL (e) 67.5 mL (e) 56.25 mL (e) 67.5 mL (f) 56.25 mL (e) 67.5 mL (f) 56.25 mL (e) 67.5 mL (f) 67.5 mL weight NH₃, which will be required to precipitate iron as Fe(OH)₃ in a 0.8 g sample that contains 50% Fe₂O₃. (a) 0.344 mL 4. In the preparation of iron from haematite (Fe₂O₃) by the reaction with carbon (b) 3.44 mL (d) 10.34 mL $Fe_2O_3 + C \longrightarrow Fe + CO_2$ How much 80% pure iron could be produced from 120 kg of 90% pure Fe₂O₃? (a) 94.5 kg 5. A mineral consists of an equimolar mixture of the carbonates of two bivalent metals. One metal is present to the extent of 12.5% by weight. 2.8 g of the mineral on heating lost 1.32 g of 10 CO2. What is the % by weight of the other metal? (a) 87.5 (b) 35.71 6. 6.2 g of a sample containing Na₂CO₃, NaHCO₃ and non-volatile inert impurity on gentle 1 heating loses 5% of its weight due to reaction $2\text{NaHCO}_3 \longrightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$. Residue is dissolved in water an formed 100 mL solution and its 10 mL portion requires 7.5 mL of 0.2 M aqueous solution of BaCl₂ for complete precipitation of carbonates. Determine weight (in gram) of Na₂CO₃ in the original sample. (a) 1.59 (b) 1.06 7. Nitric acid can be produced NH₃ in three steps process (d) None of these (I) $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$ (II) $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$ (III) $3NO_2(g) + H_2O(l) \longrightarrow 2HNO_3(aq) + NO(g)$ % yield of Ist, IInd and IIIrd are respectively 50%, 60% and 80% respectively then what volume of $NH_3(g)$ at 1 atm and 0°C required to produced 1575 g of HNO_3 . (a) 156.25 (b) 350 L (c) 3500 L (d) None of these 8. 1 M NaOH solution was slowly added into 1000 mL of 183.75 g impure H₂SO₄ solution and the following plot was obtained. The percentage purity of H2SO4 sample and slope of the curve respectively are:

used. (a) 5.04 (b) 10.08 (c) 3.36 (d) 33.6 (a) 20 (a) 5.04 (b) 10.08 (c) 3.36 (d) 33.6 (d) 33.6 (e) 3.36 (f) 33.6 (f) 33.6 (g) 3.36 (g) 3.36 (g) 3.36 (h) 33.6 (g) 3.36 (g) 4.36 (g) 4.37 (g) 4.37 (g) 4.38 (g) 3.36 (g) 3.36 (g) 4.38 (h) 3.36 (g) 6.38	18				
150 mL of H ₂ O ₂ sample was divided into two parts. First part was treated with K1 and formulated 200 mL of M/2 H ₂ SO ₄ for neutralisation. Other part was treated with K1 and formulated 0.3 5.04 16. RH ₂ (ion exchange resin) can replace Ca ²⁺⁺ ions in hard water as RH ₂ + Ca ²⁺ Per million of Ca ²⁺ is: (a) 3.06 (b) 10.08 (c) 3.36 (d) 33.6 (d) 33.6 (e) 3.36 (f) 3.20 (h) 10 (c) 40 (o) 40 (o) 40 (d) 100 (o) 40 (o) 40 (d) 100 (o) 40 (d) 100 (o) 40 (d) 100 (o) 40 (d)	15. H ₂ O ₂ + 2	KI 40% yield	ILLE THE TANK OF THE PARTY OF T		
150 mL of H ₂ O ₂ sample was divided into two parts. First part was treated with K1 and formulated 200 mL of M/2 H ₂ SO ₄ for neutralisation. Other part was treated with K1 and formulated 0.3 5.04 16. RH ₂ (ion exchange resin) can replace Ca ²⁺⁺ ions in hard water as RH ₂ + Ca ²⁺ Per million of Ca ²⁺ is: (a) 3.06 (b) 10.08 (c) 3.36 (d) 33.6 (d) 33.6 (e) 3.36 (f) 3.20 (h) 10 (c) 40 (o) 40 (o) 40 (d) 100 (o) 40 (o) 40 (d) 100 (o) 40 (d) 100 (o) 40 (d) 100 (o) 40 (d)	H ₀ O ₋ + 21	$I_2 + 2KOH$		PROBLEMS IN COSTA	
used. (a) 5.04 (b) 10.08 (c) 3.36 RCa + 2H ⁺ . If 1 L of hard water after passing through RH ₂ has pH = 3 then hardness in Pans. (a) 20 (b) 10 (c) 40 (d) 100 (d) 100 (e) 40 (o) 4	7.00	4 + 3H-SO 50% vie	1.a		
used. (a) 5.04 (b) 10.08 RCa + 2H ⁻ . If 1 L of hard water after passing through RH ₂ has pH = 3 then hardness in pantallion of Ca ²⁶ is: (a) 20 (b) 10 (c) 40 (d) 100 completely neutralized by 90.0 cm ³ of aq. NaOH containing 29.4 g of the acid per little were then methyl orange is the indicator in two separate titrations. Hence (y - x) is: (a) 40 mL (b) 80 mL (c) 120 mL (d) 40 data insufficient when methyl orange is the indicator in two separate titrations. Hence (y - x) is: (a) 25.5 mL (b) 80 mL (c) 100 mL (d) 25.6 and HCl. What as used with phenolphthalein is used as an indicator and y mL of HCl is used when phenolphthalein is used as an indicator and y mL of HCl is used volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ (sulphuryl chloride) reacts with water to given a mixture of H ₂ SO ₄ and HCl. What (a) 25 mL (b) 50 mL (c) 100 mL (d) 200 mL (d) 200 mL (e) 100 mL (d) 200 mL (e) 100 mL (f) 200 mL (g) 201 mL (h) 50 mL	KOH requi	red 200 - i was divided in	$\rightarrow K_2SO_4 + 2MnSO_4 + 3C_4$	0 + 44 0	STOICHIUMETRY
RCa + 2H ⁻ . If 1 L of hard water after passing through RH ₂ has pH = 3 then hardness in paner million of Ca ²⁺ is: (a) 20 (b) 10 (c) 40 (d) 100 (d) 100 (d) 100 (e) 40 (d) 100 (d) 33.6 (d) 33.6 (d) 33.6 (d) 33.6 (d) 33.6 (d) 20.6 (e) 40 (f) 100 (g) 40 (g) 100 (g) 40 (g) 100 (g) 40 (g) 100 (g) 40 (g) 100 (g) 40 (h) 100 (h) 40 (yielding 6.7	74 litre of O	for neutralises:	S treated with the	acidic
RCa + 2H ⁻ . If 1 L of hard water after passing through RH ₂ has pH = 3 then hardness in paner million of Ca ²⁺ is: (a) 20 (b) 10 (c) 40 (d) 100 (d) 100 (d) 100 (e) 40 (d) 100 (d) 33.6 (d) 33.6 (d) 33.6 (d) 33.6 (d) 33.6 (d) 20.6 (e) 40 (f) 100 (g) 40 (g) 100 (g) 40 (g) 100 (g) 40 (g) 100 (g) 40 (g) 100 (g) 40 (h) 100 (h) 40 ((a) 5.04	2 at STP. Using	% yield indicated 6-1	art was treated with to	Dete
per million of Ca ²⁺ is: (a) 20 (b) 10 (c) 40 (c) 40 (d) 100 (e) 40 (c) 40 (c) 40 (c) 40 (d) 100 (e) 40 (d) 100 (e) 40 (f) 36 (g) 36 (g) 37 (h) 26 (h) 20	10. RH Gian	(D) 10.00		orrengin of H o	(a)
17. 100 cm³ of a solution of an acid (Molar mass = 98) containing 29.4 g of the acid per litre were completely neutralized by 90.0 cm³ of aq. NaOH containing 29.4 g of the acid per litre were (a) 3 18. 20 mL of 0.1 M solution of compound Na ₂ CO ₃ ·NaHCO ₃ ·2H ₂ O is titrated against 0.65 M HCl, when methyl orange is the indicator in two separate titrations. Hence (y - x) is: (a) 40 mL (b) 80 mL (c) 12 mL (d) None of the Security of the	$RCa + 2H^+$	If I resin) can repla	(c) 3.36	(d) 33.6	24. 1 m
17. 100 cm³ of a solution of an acid (Molar mass = 98) containing 29.4 g of the acid per litre were (a) 3 completely neutralized by 90.0 cm³ of aq. NaOH containing 29.4 g of the acid per litre were (a) 3 (b) 2 (c) 1 x mL of HCl is used when phenolphthalein is used as an indicator and y mL of HCl is used when phenolphthalein is used as an indicator and y mL of HCl is used (a) 40 mL (b) 80 mL (c) 120 mL (d) None of the see (y - x) is: volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ solution: 20. A sample containing HAsO ₂ (mol. wt. = 108) and weighing 3.78 g is alsosolved and diluted to with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25 M acidified KMnO ₄ (b) 20% (c) 10% (d) none of these solution. The resultant solution was then titrated with 2n dust which converted Fe³t of the solution to Fe²t. The Fe²t required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight disproportional to Br and BrO ₃ . The resulting solution. The resultanded by acidifying the solution. The resulting solution is sufficient with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is a solution.	per million	of Ca2+ :	assing through Dry	vater as RH + C-2+	(a)
completely neutralized by 90.0 cm³ of aq. NaOH containing 29.4 g of the acid per litre were basicity of the acid is: (a) 3 18. 20 mL of 0.1 M solution of compound Na ₂ CO ₃ ·NaHCO ₃ ·2H ₂ O is titrated against 0.05 M HCl. when methyl orange is the indicator in two separate titrations. Hence (y - x) is: (a) 40 mL (b) 80 mL (c) 120 mL (d) None of these volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 MSO ₂ Cl ₂ solution: (a) 25 mL (b) 50 mL (c) 100 mL (d) 200 mL 250 mL in a volumetric flask. A 50 mL sample (aliquot) is withdrawn with a pipet and titrated with 35 mL of 0.0 5 M solution of I ₂ . Calculate the percentage HASO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these solution. The resultant solution was then titrated with Zn dust which converted Fe³+ of the solution to Fe²+. The Fe²+ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight of the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 (a) 85.3% (b) 12.5% (c) 90% (d) 64%	(a) 20	15:	andugh RH ₂ has p	H = 3 then hardness:	
18. 20 mL of 0.1 M solution of compound Na ₂ CO ₃ ·NaHCO ₃ ·2H ₂ O is titrated against 0.5 M HCl. x mL of HCl is used when phenolphthalein is used as an indicator and y mL of HCl is used when phenolphthalein is used as an indicator and y mL of HCl is used (a) 40 mL (b) 80 mL (c) 120 mL (d) None of these volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ solution. 20. A sample containing HAsO ₂ (mol. wt. = 108) and weighing 3.78 g is dissolved and diluted to with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: 21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br and BrO ₃ . The resulting solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is 85.3% (c) 90% (d) 64%	17. 100 cm ³ of a	solution of an - it is	(c) 40	aness in pany	Ca
18. 20 mL of 0.1 M solution of compound Na ₂ CO ₃ ·NaHCO ₃ ·2H ₂ O is titrated against 0.5 M HCl. x mL of HCl is used when phenolphthalein is used as an indicator and y mL of HCl is used (a) 40 mL (b) 80 mL (c) 120 mL (d) None of these volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ solution. 20. A sample containing HAsO ₂ (mol. wt. = 108) and weighing 3.78 g is dissolved and diluted to with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25 % (b) 20% (c) 10% (d) none of these with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HASO ₂ in the sample: 21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 21. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br and BrO ₃ . The resulting solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is 48.83%	completely ne	eutralized by on o	mass = 98) containing 20	(d) 100	(8
18. 20 mL of 0.1 M solution of compound Na ₂ CO ₃ ·NaHCO ₃ ·2H ₂ O is titrated against 0.5 M HCl. x mL of HCl is used when phenolphthalein is used as an indicator and y mL of HCl is used when phenolphthalein is used as an indicator and y mL of HCl is used (a) 40 mL (b) 80 mL (c) 120 mL (d) None of these volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ solution. 20. A sample containing HAsO ₂ (mol. wt. = 108) and weighing 3.78 g is dissolved and diluted to with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these 21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight of solution at the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 27. (d) data insufficient when methyl or death is used as an indicator and y mL of HCl is used (d) None of these volume of 0.25 mL (d) 200 mL. (d) None of these 216 mL (d) 200 mL. (d) 200 mL (d) 200 mL (e) 100 mL (d) 200 mL 250 mL in a volumetric flask. A 50 mL sample (aliquot) is withdrawn with a pipet and titrated with 35 mL of 0.25 M acidified KmnO ₄ (a) 25% (b) 20% (c) 10% (d) none of these 30 mL in a volumetric flask. A 50 mL sample is 4 mL in a volumetric flask. A 50 mL sample is 5 mL of 0.25 M acidified KmnO ₄ solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight which is a disproportional to Br and BrO ₃ . The resulting solution is free from Br by extraction and 2 mL in a disproportional to Br and BrO ₃ . The resulting solution is free from Br by extraction and 2 mL in a multiple flast in the multiple flast in the flast in th	Dasicity of the	e acid is:	aq. NaOH containing 20	7.4 g of the acid per litre were	26. A
x mL of HCl is used when phenolphthalein is used as an indicator and y mL. of HCl is used when phenolphthalein is used as an indicator and y mL. of HCl is used (a) 40 mL. (b) 80 mL. (c) 120 mL. (d) None of these volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ (sulphuryl chloride) reacts with water to given a mixture of H ₂ SO ₄ and HCl. What (a) 25 mL. (b) 50 mL. (c) 100 mL. (d) 200 mL. 20. A sample containing HAsO ₂ (mol. wt. = 108) and weighing 3.78 g is dissolved and diluted to with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these 21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight of Se ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is constant and sample is given a mixture of an indicator and sample is given an indicator and year. The substant sample is given an indicator and year. The substant sample is given an indicator and year. The substant sample is given an indicator and year. The year and year. The year and	18. 20 ml	(b) 2		g of NaOH per 500 cm ³ . The	3
(b) 80 mL (c) 120 mL (d) None of these volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ solution: (a) 25 mL (b) 50 mL (c) 100 mL (d) 200 mL (d) 200 mL 250 mL in a volumetric flask. A 50 mL sample (aliquot) is withdrawn with a pipet and titrated with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these volume of 6.2 M SO ₂ Cl ₂ solution: (d) 200 mL (d) 200 mL (e) 200 mL (f) 200 mL (f) 200 mL (g) 200 mL (h) 200 mL (h	20 ML of 0.1 /	M solution of compound	(c) 1		
(b) 80 mL (c) 120 mL (d) None of these volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ solution: (a) 25 mL (b) 50 mL (c) 100 mL (d) 200 mL (d) 200 mL (a) 25 mL (b) 50 mL (c) 100 mL (d) 200 mL (d) 200 mL (e) 200 mL (f) 250 mL (f) 250 mL (g) 200 mL (h) 250 mL (h) 50 mL (h) 60 mL	when model is	s used when phenological	Na ₂ CO ₃ ·NaHCO ₃ ·2H ₂ O i	(d) data insufficient	
(b) 80 mL (c) 120 mL (d) None of these volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ solution: (a) 25 mL (b) 50 mL (c) 100 mL (d) 200 mL (d) 200 mL 250 mL in a volumetric flask. A 50 mL sample (aliquot) is withdrawn with a pipet and titrated with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these volume of 6.2 M SO ₂ Cl ₂ solution: (d) 200 mL (d) 200 mL (e) 200 mL (f) 200 mL (f) 200 mL (g) 200 mL (h) 200 mL (h	(a) 40 m/	orange is the indicator in	ilein is used as an indic	ator and v ml of Ho	27.
volume of 0.2 M Ba(OH) ₂ is needed to completely neutralize 25 mL of 0.2 M SO ₂ Cl ₂ solution: (a) 25 mL (b) 50 mL (c) 100 mL (d) 200 mL (d) 200 mL 20. A sample containing HAsO ₂ (mol. wt. = 108) and weighing 3.78 g is dissolved and diluted to with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these vith 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these 21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁴ of the solution to Fe ²⁴ . The Fe ²⁴ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight with Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is the solution of the solution.	19. SO-Cl (-1)	(b) 80 mL	two separate titrations	. Hence $(y - x)$ is:	đ
20. A sample containing HAsO ₂ (mol. wt. = 108) and weighing 3.78 g is dissolved and diluted to with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these 21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is (a) 85.3% (b) 12.5% (c) 90% (d) 64%		There is a second of the secon			
20. A sample containing HAsO ₂ (mol. wt. = 108) and weighing 3.78 g is dissolved and diluted to with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these 21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 22. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	(2) 25	Ba(OH) ₂ is needed to c	ompletely neutralize 25	ture of H ₂ SO ₄ and HCl. W	nat 28
250 mL in a volumetric flask. A 50 mL sample (aliquot) is withdrawn with a pipet and titrated with 35 mL of 0.05 M solution of I ₂ . Calculate the percentage HAsO ₂ in the sample: (a) 25% (b) 20% (c) 10% (d) none of these 21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	20 A some	(b) 50 mL	(c) 100 mt	mL of 0.2 M SO ₂ Cl ₂ solutio	n:
(a) 25% (b) 20% (c) 10% (d) none of these solution. The resultant solution was then titrated with 100 mL of 0.25 M acidified KMn04 solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%					
(a) 25% (b) 20% (c) 10% (d) none of these solution. The resultant solution was then titrated with 100 mL of 0.25 M acidified KMn04 solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 22. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	with 35 ml - 600	imetric flask. A 50 mL s	ample (aliquot) is with	78 g is dissolved and dilute	ed to
21. A mixture of FeO and Fe ₂ O ₃ is completely reacted with 100 mL of 0.25 M acidified KMnO ₄ solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	(a) 250	.05 M solution of I_2 . C	alculate the percentage	re HASO in the seed the	rated
solution. The resultant solution was then titrated with Zn dust which converted Fe ³⁺ of the solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	(a) 25%	(b) 200%		so the sample:	2
solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ ($M = 128$ g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	21. A mixture of FeO	and Fe ₂ O ₂ is comple	THE RESERVE OF THE PARTY OF THE	(d) none of thes	e -
solution to Fe ²⁺ . The Fe ²⁺ required 1000 mL of 0.10 M K ₂ Cr ₂ O ₇ solution. Find out the weight % Fe ₂ O ₃ in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ ⁻ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ ($M = 128$ g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	solution. The resi	ultant solution was th	on titueted with 100	mL of 0.25 M acidified I	OnM
% Fe_2O_3 in the mixture. (a) 80.85 (b) 19.15 (c) 50 (d) 89.41 22. To a 10 mL , 1 M aqueous solution of Br_2 , excess of NaOH is added so that all Br_2 is disproportional to Br^- and BrO_3^- . The resulting solution is free from Br^- , by extraction and excess of OH^- neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC_2O_4 ($M = 128 \text{ g/mol}$) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	solution to Fe ²⁺ .	The Fe ²⁺ required 100	omi of 0.10 MW.	lust which converted Fe34	of the
(a) 80.85 (b) 19.15 (c) 50 (d) 89.41 2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	% Fe ₂ O ₂ in the m	ivture	o mil of 0.10 M K ₂ Cr	₂ O ₇ solution. Find out the	e Weigh
2. To a 10 mL, 1 M aqueous solution of Br ₂ , excess of NaOH is added so that all Br ₂ is disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ (M = 128 g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%					-911
disproportional to Br ⁻ and BrO ₃ . The resulting solution is free from Br ⁻ , by extraction and excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC ₂ O ₄ ($M = 128$ g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%		(b) 19.15	(c) 50	(d) 89.41	
excess of OH ⁻ neutralised by acidifying the solution. The resulting solution is sufficient to react with 2 g of impure CaC_2O_4 ($M = 128$ g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	2. To a 10 mL, 1 M	aqueous solution of	of Bro. excess of N	the so hebbe si HOs	11
react with 2 g of impure CaC_2O_4 ($M=128$ g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%	disproportional to	Br and DrO The	- 22; excess of ive	dorr is added so that	all Br _{2 is}
react with 2 g of impure CaC_2O_4 ($M=128$ g/mol) sample. The % purity of oxalate sample is: (a) 85.3% (b) 12.5% (c) 90% (d) 64%		of and brog. The	resulting solution is	s tree from Br ⁻ , by extr	action and
(a) 85.3% (b) 12.5% (c) 90% (d) 64%	excess of OH neu	tralised by acidifyin	g the solution. The	e resulting solution is a	Sufficient
(a) 85.3% (b) 12.5% (c) 90% (d) 64%	react with 2 g of im	oure CaC_2O_A $(M=1)$	28 g/mol) sample	The % purity of ovalate	satticient to
(a) 0470					sample is:
0.10 g of a sample containing CuCO, and some inert impurity was dissolved in the	(a) 85.3%	(b) 12.5%	(c) 90%	(d) 64%	
CONTRACTOR CONTRACTOR AND	0.10 g of a sample	containing CuCO	and some inert	impurity was disal	rod :- 1"
sulphuric acid and volume made up to 50 mL. This solution was added into 50 mL of 0.041	ourprium actually vi	Junie made up to 5	U HIL. THIS SOLUTION	ii was added into 50 m	L OT 0.04

solution where copper precipitates as CuI and I is oxidized into I3. A 10 mL portion of the

solution is taken for analysis, filtered and made up free I3 and then treated with excess

(b) 75.3%

ormed

Mno

imple

parts

ere

The

CI,

b

(a) 73.5%

Levels

PASSAGE

Oleum is considered as a solution of SO₃ in H₂SO₄, which is obtained by passing SO₄ and the solution of SO₃ in H₂SO₄, which is obtained by passing SO₄ and the solution of SO₅ in H₂SO₄, which is obtained by passing SO₅ in H₂SO₄ and the solution of SO₅ in H₂SO₅ in H₂SO Oleum is considered as a solution of SO₃ in H₂SO₄, which is obtained by passing SO solution of H₂SO₄. When 100 g sample of oleum is diluted with desired weight of H₂SO₄ after dilution is known as % labelling in oleum the total mass of H₂SO₄ when 100 g sample of oleum is unuted with the total mass of H₂SO₄ obtained after dilution is known as % labelling in oleum. the total mass of H₂SO₄ obtained after dilution is known as For example, a oleum bottle labelled as '109% H₂SO₄' means the 109 g total mass of plants and the second second plants are second plants. The second plants are second plants are second plants are second plants. The second plants are second plants are second plants are second plants. For example, a oleum bottle labelled as $109\% \text{ fr}_2504$ linear H₂SO₄ will be formed when 100 g of oleum is diluted by 9 g of H₂O which combines of H₂SO₄ will be formed when 100 g of oleum is diluted by 9 g of H₂O which combines of H₂SO₄ will be formed when 100 g of oleum is diluted by 9 g of H₂O which combines of H₂SO₄ will be formed when 100 g of oleum is diluted by 9 g of H₂O which combines of the second state of all the free SO_3 present in oleum to form H_2SO_4 as $SO_3 + H_2O$

1. What is the % of free SO₃ in an oleum that is labelled as '104.5% H₂SO₄'?

2. 9.0 g water is added into oleum sample labelled as "112%" H₂SO₄ then the amount of h

3. If excess water is added into a bottle sample labelled as "112% H₂SO₄" and is reacted with g Na₂CO₃, then find the volume of CO₂ evolved at 1 atm pressure and 300 K temperature all the completion of the reaction:

4. 1 g of oleum sample is diluted with water. The solution required 54 mL of 0.4 N NaOH fo complete neutralization. The % of free SO_3 in the sample is :

(c) 20

(d) None of these

20 mL of

is the vol (a) 2.8 40 g Ba(

is comp

sample (a) 28

ASSA

doe TWE

> Ter re

PASSAGE 2

The strength of H_2O_2 is expressed in several ways like molarity, normality, % (w/V), volume strength, etc. The strength of "10 V" means 1 volume of H₂O₂ on decomposition gives 10 volumes of oxygen at STP or 1 litre of H₂O₂ gives 10 litre of O₂ at STP. The decomposition of H2O2 is shown as under:

$$H_2O_2(aq) \longrightarrow H_2O(l) + \frac{1}{2}O_2(g)$$

H₂O₂ can acts as oxidising as well as reducing agent, as oxidizing agent H₂O₂ converted into H_2O and as reducing agent H_2O_2 converted into O_2 , both cases it's n-factor is 2.

Normality of H_2O_2 solution = $2 \times Molarity$ of H_2O_2 solution

What is the molarity of "11.2 V" of H₂O₂?

(a) 1 M

(b) 2 M

(c) 5.6 M

(d) 11.2 M

What is the percentage strength (% w/V) of "11.2 V" H₂O₂? (b) 3.4 (c) 34

(a) 1.7

(d) None of th

PROBLEMS IN CHEMIST ssing SO of H₂O then leum. ass of pure bines with f these ount of free STP d with 5.3 ture after 10H for se

- 3. 20 mL of H₂O₂ solution is reacted with 80 mL of 0.05 M KMnO₄ in acidic medium then what is the volume strength of H2O2?
- (a) 2.8 (b) 5.6 (c) 11.2 (d) None of these

 4. 40 g Ba(MnO₄)₂ (mol. wt. = 375) sample containing some inert impurities in acidic medium is completely reacted with 125 mL of "33.6 V" of H₂O₂. What is the percentage purity of the (a) 28.12% (b) 70.31% (d) None of these (c) 85%

PASSAGE

3

A water is said to be a soft water if it produces sufficient foam with the soap and water that does not produce foam with soap is known as hard water. Hardness has been classified into two types (i) Temporary hardness (ii) Permanent hardness.

Temporary hardness is due to presence of calcium and magnesium bicarbonate. It is simply removed by boiling as

$$\begin{array}{ccc} \text{Ca}(\text{HCO}_3)_2 & \stackrel{\Delta}{\longrightarrow} & \text{CaCO}_3 \downarrow + \text{CO}_2 \uparrow + \text{H}_2\text{O} \\ \text{Mg}(\text{HCO}_3)_2 & \stackrel{\Delta}{\longrightarrow} & \text{MgCO}_3 \downarrow + \text{CO}_2 \uparrow + \text{H}_2\text{O} \end{array}$$

Temporary hardness can also be removed by addition of slaked lime, Ca(OH)2

$$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$$

Permanent hardness is due to presence of sulphate and chlorides of Ca, Mg, etc. It is removed by washing soda as

$$\begin{array}{ccc} \operatorname{CaCl}_2 + \operatorname{Na}_2\operatorname{CO}_3 & \longrightarrow & \operatorname{CaCO}_3 \downarrow + \operatorname{2NaCl} \\ \operatorname{CaSO}_4 + \operatorname{Na}_2\operatorname{CO}_3 & \longrightarrow & \operatorname{CaCO}_3 \downarrow + \operatorname{Na}_2\operatorname{SO}_4 \end{array}$$

Permanent hardness also removed by ion exchange resin process as

$$2RH + Ca^{2+} \longrightarrow R_2Ca + 2H^+$$

 $2ROH + SO_4^{2-} \longrightarrow R_2SO_4 + 2OH^-$

The degree of hardness of water is measured in terms of ppm of CaCO₃. 100 ppm means 100 g of CaCO3 is present in 106 g of H2O. If any water contain 120 ppm of MgSO4, its hardness in terms of CaCO₃ = 100 ppm.

- 1. One litre of a sample of hard water (d = 1 g/mL) contains 136 mg of CaSO₄ and 190 mg of . MgCl₂. What is the total hardness of water in terms of CaCO₃?
 - (a) 100 ppm
- (b) 200 ppm
- (c) 300 ppm
- (d) None of these
- 2. What is the weight of Ca(OH)₂ required for 10 litre of water remove temporary hardness of 100 ppm due to Ca(HCO₃)₂?
 - (a) 1.62 g
- (b) 0.74 g
- (c) 7.4 g
- (d) None of these
- 3. A 200 g sample of hard water is passed through the column of cation exchange resin, in which H⁺ is exchanged by Ca²⁺. The outlet water of column required 50 mL of 0.1 M NaOH for complete neutralization. What is the hardness of Ca2+ ion in ppm? (c) 750 ppm (d) 1000 ppm
 - (a) 250 ppm
- (b) 500 ppm

ABC

ABOUT THE AUTHORS

(NA Sir)

Narendra Avasthi received his bachelor degree in Chemical Engineering from MNIT (Jaipur) and Post Graduate Course in Advanced Computing designed and developed by the ACTS (Pune). He has ten year experience for guiding IIT-JEE aspirants.

(VKJ Sir)

Vimal Kumar Jaiswal received his M.Sc. (Chemistry) degree and M.Sc. (Tech.) degree in Mass Comm. in Science & Technology from Lucknow University. He has ten year experience for guiding IIT-JEE aspirants.

They are well known for their simple, lucid and unique presentation of chemistry and are shaping the dreams of IIT-JEE aspirants. NA Sir is highly dedicated to Physical Chemistry and VKJ Sir is highly dedicated to Inorganic Chemistry.

DPEAMSHAPERS#9897

Shri Balaji Publications

Muzaffarnagar (U.P.)

ADESETTER.COM